数据挖掘(Data Mining,DM)又称数据库中的知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
数据挖掘领域10大挑战性问题:
1.Developing a Unifying Theory of Data Mining
2.Scaling Up for High Dimensional Data/High Speed Streams
3.Mining Sequence Data and Time Series Data
4.Mining Complex Knowledge from Complex Data
5.Data Mining in a Network Setting
6.Distributed Data Mining and Mining Multi-agent Data
7.Data Mining for Biological and Environmental Problems
8.Data-Mining-Process Related Problems
9.Security, Privacy and Data Integrity
10.Dealing with Non-static, Unbalanced and Cost-sensitive Data (非静态、非平衡及成本敏感数据的挖掘)
链接:http://www.cnblogs.com/janemores/archive/2013/04/26/3045962.html