当没有为一个或多个项目或整个单元提供信息时,可能会出现缺失数据。在现实生活场景中,缺少数据是一个非常大的问题。缺失数据也可以指熊猫中的 NA(不可用)值。在 DataFrame 中,有时许多数据集只是带着缺失的数据到达,要么是因为它存在但未被收集,要么因为它从未存在。例如,假设被调查的不同用户可能选择不分享他们的收入,一些用户可能选择不分享地址,这样很多数据集就丢失了。

在 Pandas 中,缺失数据由两个值表示:

  • None:None 是一个 Python 单例对象,通常用于 Python 代码中的缺失数据。
  • NaN :NaN(Not a Number 的首字母缩写词),是所有使用标准 IEEE 浮点表示的系统都可以识别的特殊浮点值

Pandas 将 None 和 NaN 视为本质上可以互换以指示缺失值或空值。为了促进这一约定,Pandas DataFrame 中有几个用于检测、删除和替换空值的有用函数:

  • isnull()
  • notnull()
  • dropna()
  • fillna()
  • replace()
  • interpolate()

使用 isnull() 和 notnull() 检查缺失值

为了检查 Pandas DataFrame 中的缺失值,我们使用函数 isnull() 和 notnull()。这两个函数都有助于检查一个值是否为 NaN。这些函数也可以在 Pandas 系列中使用,以便在系列中查找空值。

使用 isnull() 检查缺失值

为了检查 Pandas DataFrame 中的空值,我们使用 isnull() 函数,该函数返回布尔值的数据帧,对于 NaN 值是 True。代码#1:

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, 90, np.nan, 95],
'Second Score': [30, 45, 56, np.nan],
'Third Score':[np.nan, 40, 80, 98]}

# 从列表创建数据框
df = pd.DataFrame(dict)

# 使用 isnull() 函数

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_pandas

   

代码 #2:

# importing pandas package
import pandas as pd

# 从csv文件制作数据框
data = pd.read_csv("employees.csv")

# 为 NaN 值创建布尔系列 True
bool_series = pd.isnull(data["Gender"])

# 过滤数据仅显示 Gender = NaN 的数据

输出: 如输出图像所示,仅显示 Gender = NULL 的行。

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_缺失值_02

  

使用 notnull() 检查缺失值

为了检查 Pandas Dataframe 中的空值,我们使用 notnull() 函数,该函数返回布尔值的数据帧,对于 NaN 值是 False。

代码#3:

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, 90, np.nan, 95],
'Second Score': [30, 45, 56, np.nan],
'Third Score':[np.nan, 40, 80, 98]}

# 使用字典创建数据框
df = pd.DataFrame(dict)

# 使用 notnull() 函数

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_缺失值_03

   

代码 #4:

# importing pandas package
import pandas as pd

# 从csv文件制作数据框
data = pd.read_csv("employees.csv")

# 为 NaN 值创建布尔系列 True
bool_series = pd.notnull(data["Gender"])

# 过滤数据,仅显示 Gender = Not NaN 的数据

输出: 如输出图像所示,仅显示 Gender = NOT NULL 的行。

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_数据_04

  

使用 fillna()、replace() 和 interpolate() 填充缺失值

为了填充数据集中的空值,我们使用 fillna()、replace() 和 interpolate() 函数,这些函数用它们自己的一些值替换 NaN 值。所有这些功能都有助于在 DataFrame 的数据集中填充空值。Interpolate() 函数基本上用于填充数据帧中的 NA 值,但它使用各种插值技术来填充缺失值,而不是对值进行硬编码。代码 #1: 用单个值填充空值

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, 90, np.nan, 95],
'Second Score': [30, 45, 56, np.nan],
'Third Score':[np.nan, 40, 80, 98]}

# 从字典创建数据框
df = pd.DataFrame(dict)

# 使用 fillna() 填充缺失值
df.fillna(0)

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_数据_05

   

代码 #2:

用之前的值填充空值

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, 90, np.nan, 95],
'Second Score': [30, 45, 56, np.nan],
'Third Score':[np.nan, 40, 80, 98]}

# 从字典创建数据框
df = pd.DataFrame(dict)

# 用以前的值填充缺失值
df.fillna(method ='pad')

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_后端_06

   

代码#3: 用下一个填充空值

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, 90, np.nan, 95],
'Second Score': [30, 45, 56, np.nan],
'Third Score':[np.nan, 40, 80, 98]}

# 从字典创建数据框
df = pd.DataFrame(dict)

# 使用 fillna() 函数填充空值
df.fillna(method ='bfill')

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_Python_07

   

代码 #4: 在 CSV 文件中填充空值

# importing pandas package
import pandas as pd

# 从csv文件制作数据框
data = pd.read_csv("employees.csv")

# 打印数据框的前 10 到 24 行以进行可视化
data[10:25]

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_缺失值_08

现在我们将用“No Gender”填充 Gender 列中的所有空值

# importing pandas package
import pandas as pd

# 从csv文件制作数据框
data = pd.read_csv("employees.csv")

# 使用 fillna() 填充空值
data["Gender"].fillna("No Gender", inplace = True)

data

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_后端_09

 代码 #5: 使用 replace() 方法填充空值

# importing pandas package
import pandas as pd

# 从csv文件制作数据框
data = pd.read_csv("employees.csv")

# 打印数据框的前 10 到 24 行以进行可视化
data[10:25]

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_pandas_10

现在我们要将数据框中的所有 Nan 值替换为 -99 值。

# importing pandas package
import pandas as pd

# 从csv文件制作数据框
data = pd.read_csv("employees.csv")

# 将数据框中的 Nan 值替换为 -99
data.replace(to_replace = np.nan, value = -99)

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_数据_11

   

代码 #6: 使用 interpolate() 函数使用线性方法填充缺失值。

# importing pandas as pd
import pandas as pd

# 创建数据框
df = pd.DataFrame({"A":[12, 4, 5, None, 1],
"B":[None, 2, 54, 3, None],
"C":[20, 16, None, 3, 8],
"D":[14, 3, None, None, 6]})

# 打印数据框

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_缺失值_12

让我们使用线性方法对缺失值进行插值。请注意,线性方法忽略索引并将值视为等距。

# 插入缺失值
df.interpolate(method ='linear', limit_direction ='forward')

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_缺失值_13

正如我们所看到的输出,第一行中的值无法被填充,因为值的填充方向是向前的,并且没有可以用于插值的先前值。  

使用 dropna() 删除缺失值

为了从数据框中删除空值,我们使用了 dropna() 函数,该函数以不同的方式删除具有空值的数据集的行/列。代码 #1: 删除至少有 1 个空值的行。

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, 90, np.nan, 95],
'Second Score': [30, np.nan, 45, 56],
'Third Score':[52, 40, 80, 98],
'Fourth Score':[np.nan, np.nan, np.nan, 65]}

# 从字典创建数据框
df = pd.DataFrame(dict)

df

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_pandas_14

现在我们删除具有至少一个 Nan 值(Null 值)的行

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, 90, np.nan, 95],
'Second Score': [30, np.nan, 45, 56],
'Third Score':[52, 40, 80, 98],
'Fourth Score':[np.nan, np.nan, np.nan, 65]}

# 从字典创建数据框
df = pd.DataFrame(dict)

# 使用 dropna() 函数

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_后端_15

 

代码 #2: 如果该行中的所有值都丢失,则删除行。

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, np.nan, np.nan, 95],
'Second Score': [30, np.nan, 45, 56],
'Third Score':[52, np.nan, 80, 98],
'Fourth Score':[np.nan, np.nan, np.nan, 65]}

# 从字典创建数据框
df = pd.DataFrame(dict)

df

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_数据_16

现在我们删除所有数据丢失或包含空值(NaN)的行

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, np.nan, np.nan, 95],
'Second Score': [30, np.nan, 45, 56],
'Third Score':[52, np.nan, 80, 98],
'Fourth Score':[np.nan, np.nan, np.nan, 65]}

df = pd.DataFrame(dict)

# 使用 dropna() 函数
df.dropna(how = 'all')

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_数据_17

代码 #3: 删除具有至少 1 个空值的列。

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, np.nan, np.nan, 95],
'Second Score': [30, np.nan, 45, 56],
'Third Score':[52, np.nan, 80, 98],
'Fourth Score':[60, 67, 68, 65]}

# 从字典创建数据框
df = pd.DataFrame(dict)

df

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_数据_18

现在我们删除至少有 1 个缺失值的列

# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# 列表字典
dict = {'First Score':[100, np.nan, np.nan, 95],
'Second Score': [30, np.nan, 45, 56],
'Third Score':[52, np.nan, 80, 98],
'Fourth Score':[60, 67, 68, 65]}

# 从字典创建数据框
df = pd.DataFrame(dict)

# 使用 dropna() 函数
df.dropna(axis = 1)

输出:

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_数据_19

   

代码 #4: 删除 CSV 文件中至少有 1 个空值的行

# importing pandas module
import pandas as pd

# 从csv文件制作数据框
data = pd.read_csv("employees.csv")

# 使用丢弃的 NA 值制作新数据框
new_data = data.dropna(axis = 0, how ='any')

new_data

输出:  

Python 教程之 Pandas(8)—— 在 Pandas 中处理缺失数据_Python_20

现在我们比较数据帧的大小,以便我们可以知道有多少行至少有 1 个 Null 值

print("Old data frame length:", len(data))
print("New data frame length:", len(new_data))
print("Number of rows with at least 1 NA value: ", (len(data)-len(new_data)))

输出 :

Old data frame length: 1000
New data frame length: 764
Number of rows with at least 1 NA value: 236

由于差异为 236,因此有 236 行在任何列中至少有 1 个 Null 值。