为何在单体应用中使用事件有意义

传统的分层单体应用存在一个特定问题:直接的方法调用在组件之间创建了僵化的依赖关系。您的订单处理代码直接调用库存管理,库存管理又调用仓库系统,继而触发电子邮件通知。每个组件都了解其他几个组件,从而形成一个纠缠不清的网,更改其中一部分需要理解并测试它所触及的所有内容。

事件驱动模式引入了间接性。当下单时,订单服务发布一个"OrderPlaced"事件。其他对订单感兴趣的组件——库存、发货、通知——订阅此事件并独立响应。订单服务不知道也不关心谁在监听。即使这些组件存在于同一个代码库并共享同一个数据库,它们也变得松散耦合。

这种方法提供了立竿见影的好处,而无需将应用程序拆分为微服务。您在保持单体应用运维简单性的同时,获得了可测试性、灵活性和更清晰的边界。当您最终需要提取服务时,事件驱动的结构使得过渡更加平滑,因为组件已经通过定义良好的消息进行通信,而不是直接的方法调用。

起点:一个紧密耦合的订单系统

考虑一个使用 Spring Boot 构建的典型电子商务单体应用。订单创建流程如下所示:

@Service
@Transactional
public class OrderService {
    private final OrderRepository orderRepository;
    private final InventoryService inventoryService;
    private final PaymentService paymentService;
    private final ShippingService shippingService;
    private final LoyaltyService loyaltyService;
    private final EmailService emailService;
    private final AnalyticsService analyticsService;
     
    public OrderService(
        OrderRepository orderRepository,
        InventoryService inventoryService,
        PaymentService paymentService,
        ShippingService shippingService,
        LoyaltyService loyaltyService,
        EmailService emailService,
        AnalyticsService analyticsService
    ) {
        this.orderRepository = orderRepository;
        this.inventoryService = inventoryService;
        this.paymentService = paymentService;
        this.shippingService = shippingService;
        this.loyaltyService = loyaltyService;
        this.emailService = emailService;
        this.analyticsService = analyticsService;
    }
     
    public Order createOrder(CreateOrderRequest request) {
        // 验证库存
        for (OrderItem item : request.getItems()) {
            if (!inventoryService.checkAvailability(item.getProductId(), item.getQuantity())) {
                throw new InsufficientInventoryException(item.getProductId());
            }
        }
         
        // 处理支付
        PaymentResult payment = paymentService.processPayment(
            request.getCustomerId(),
            calculateTotal(request.getItems()),
            request.getPaymentDetails()
        );
         
        if (!payment.isSuccessful()) {
            throw new PaymentFailedException(payment.getErrorMessage());
        }
         
        // 创建订单
        Order order = new Order(
            request.getCustomerId(),
            request.getItems(),
            payment.getTransactionId()
        );
        order.setStatus(OrderStatus.CONFIRMED);
        Order savedOrder = orderRepository.save(order);
         
        // 预留库存
        for (OrderItem item : request.getItems()) {
            inventoryService.reserveInventory(item.getProductId(), item.getQuantity());
        }
         
        // 创建发货单
        shippingService.createShipment(savedOrder);
         
        // 更新忠诚度积分
        loyaltyService.addPoints(
            request.getCustomerId(),
            calculateLoyaltyPoints(savedOrder)
        );
         
        // 发送确认邮件
        emailService.sendOrderConfirmation(savedOrder);
         
        // 跟踪分析
        analyticsService.trackOrderPlaced(savedOrder);
         
        return savedOrder;
    }
}

这段代码可以工作,但存在严重问题。OrderService 知道七个不同的服务。测试需要模拟所有这些服务。添加新的订单后操作意味着要修改此方法。如果电子邮件服务缓慢,订单创建就会变慢。如果分析跟踪失败,整个订单就会失败并回滚。

事务边界也是错误的。所有操作都在单个数据库事务中发生,这意味着即使电子邮件服务临时停机也会阻止订单创建。库存预留和发货单创建在事务上耦合,尽管它们在逻辑上是独立的操作。

引入 Spring 应用事件

Spring Framework 提供了一个内置的事件系统,在单个 JVM 内工作。默认情况下它是同步的,这使得它易于推理和调试。首先定义领域事件:

public abstract class DomainEvent {
    private final Instant occurredAt;
    private final String eventId;
     
    protected DomainEvent() {
        this.occurredAt = Instant.now();
        this.eventId = UUID.randomUUID().toString();
    }
     
    public Instant getOccurredAt() {
        return occurredAt;
    }
     
    public String getEventId() {
        return eventId;
    }
}
 
public class OrderPlacedEvent extends DomainEvent {
    private final Long orderId;
    private final Long customerId;
    private final List<OrderItem> items;
    private final BigDecimal totalAmount;
     
    public OrderPlacedEvent(Order order) {
        super();
        this.orderId = order.getId();
        this.customerId = order.getCustomerId();
        this.items = new ArrayList<>(order.getItems());
        this.totalAmount = order.getTotalAmount();
    }
     
    // Getters
}

事件应该是不可变的,并包含订阅者需要的所有信息。避免直接传递实体——而是复制相关数据。这可以防止订阅者意外修改共享状态。

重构 OrderService 以发布事件,而不是直接调用服务:

@Service
@Transactional
public class OrderService {
    private final OrderRepository orderRepository;
    private final InventoryService inventoryService;
    private final PaymentService paymentService;
    private final ApplicationEventPublisher eventPublisher;
     
    public OrderService(
        OrderRepository orderRepository,
        InventoryService inventoryService,
        PaymentService paymentService,
        ApplicationEventPublisher eventPublisher
    ) {
        this.orderRepository = orderRepository;
        this.inventoryService = inventoryService;
        this.paymentService = paymentService;
        this.eventPublisher = eventPublisher;
    }
     
    public Order createOrder(CreateOrderRequest request) {
        // 验证库存
        for (OrderItem item : request.getItems()) {
            if (!inventoryService.checkAvailability(item.getProductId(), item.getQuantity())) {
                throw new InsufficientInventoryException(item.getProductId());
            }
        }
         
        // 处理支付
        PaymentResult payment = paymentService.processPayment(
            request.getCustomerId(),
            calculateTotal(request.getItems()),
            request.getPaymentDetails()
        );
         
        if (!payment.isSuccessful()) {
            throw new PaymentFailedException(payment.getErrorMessage());
        }
         
        // 创建并保存订单
        Order order = new Order(
            request.getCustomerId(),
            request.getItems(),
            payment.getTransactionId()
        );
        order.setStatus(OrderStatus.CONFIRMED);
        Order savedOrder = orderRepository.save(order);
         
        // 同步预留库存(仍在关键路径上)
        for (OrderItem item : request.getItems()) {
            inventoryService.reserveInventory(item.getProductId(), item.getQuantity());
        }
         
        // 为非关键操作发布事件
        eventPublisher.publishEvent(new OrderPlacedEvent(savedOrder));
         
        return savedOrder;
    }
}

现在 OrderService 仅依赖四个组件,而不是八个。更重要的是,它只了解对订单创建至关重要的操作——库存验证、支付处理和库存预留。其他所有操作都通过事件发生。

为解耦的操作创建事件监听器:

@Component
public class OrderEventListeners {
    private static final Logger logger = LoggerFactory.getLogger(OrderEventListeners.class);
     
    private final ShippingService shippingService;
    private final LoyaltyService loyaltyService;
    private final EmailService emailService;
    private final AnalyticsService analyticsService;
     
    public OrderEventListeners(
        ShippingService shippingService,
        LoyaltyService loyaltyService,
        EmailService emailService,
        AnalyticsService analyticsService
    ) {
        this.shippingService = shippingService;
        this.loyaltyService = loyaltyService;
        this.emailService = emailService;
        this.analyticsService = analyticsService;
    }
     
    @EventListener
    @Transactional(propagation = Propagation.REQUIRES_NEW)
    public void handleOrderPlaced(OrderPlacedEvent event) {
        try {
            shippingService.createShipment(event.getOrderId());
        } catch (Exception e) {
            logger.error("Failed to create shipment for order {}", event.getOrderId(), e);
            // 不要重新抛出 - 其他监听器仍应执行
        }
    }
     
    @EventListener
    @Transactional(propagation = Propagation.REQUIRES_NEW)
    public void updateLoyaltyPoints(OrderPlacedEvent event) {
        try {
            int points = calculatePoints(event.getTotalAmount());
            loyaltyService.addPoints(event.getCustomerId(), points);
        } catch (Exception e) {
            logger.error("Failed to update loyalty points for order {}", event.getOrderId(), e);
        }
    }
     
    @EventListener
    public void sendConfirmationEmail(OrderPlacedEvent event) {
        try {
            emailService.sendOrderConfirmation(event.getOrderId());
        } catch (Exception e) {
            logger.error("Failed to send confirmation email for order {}", event.getOrderId(), e);
        }
    }
     
    @EventListener
    public void trackAnalytics(OrderPlacedEvent event) {
        try {
            analyticsService.trackOrderPlaced(event.getOrderId(), event.getTotalAmount());
        } catch (Exception e) {
            logger.error("Failed to track analytics for order {}", event.getOrderId(), e);
        }
    }
}

每个监听器在它自己的事务中运行(在适当的时候)并独立处理故障。如果发送电子邮件失败,发货单创建仍然会发生。即使分析跟踪抛出异常,订单创建事务也会成功提交。

理解事务边界

@Transactional(propagation = Propagation.REQUIRES_NEW) 注解至关重要。没有它,所有监听器都会参与订单创建事务。如果任何监听器失败,整个订单都会回滚——这正是我们试图避免的情况。

使用 REQUIRES_NEW,每个监听器都会启动一个新的事务。当监听器运行时,订单已经提交。这意味着:

  • 监听器无法阻止订单创建
  • 监听器故障不会回滚订单
  • 每个监听器的工作是独立原子性的

但这有一个权衡。如果监听器失败,订单存在但某些后处理没有发生。您需要处理这些部分故障的策略:

@EventListener
@Transactional(propagation = Propagation.REQUIRES_NEW)
public void handleOrderPlaced(OrderPlacedEvent event) {
    try {
        shippingService.createShipment(event.getOrderId());
    } catch (Exception e) {
        logger.error("Failed to create shipment for order {}", event.getOrderId(), e);
         
        // 记录失败以便重试
        failedEventRepository.save(new FailedEvent(
            event.getClass().getSimpleName(),
            event.getEventId(),
            "handleOrderPlaced",
            e.getMessage()
        ));
    }
}

一个单独的后台作业可以重试失败的事件:

@Component
public class FailedEventRetryJob {
    private final FailedEventRepository failedEventRepository;
    private final ApplicationEventPublisher eventPublisher;
     
    @Scheduled(fixedDelay = 60000) // 每分钟
    public void retryFailedEvents() {
        List failures = failedEventRepository.findRetryable();
         
        for (FailedEvent failure : failures) {
            try {
                // 重建并重新发布事件
                DomainEvent event = reconstructEvent(failure);
                eventPublisher.publishEvent(event);
                 
                failure.markRetried();
                failedEventRepository.save(failure);
            } catch (Exception e) {
                logger.warn("Retry failed for event {}", failure.getEventId(), e);
                failure.incrementRetryCount();
                failedEventRepository.save(failure);
            }
        }
    }
}

这种模式提供了最终一致性——系统可能暂时不一致,但通过重试自行恢复。

转向异步事件

Spring 的 @EventListener 默认是同步的。事件处理发生在发布事件的同一线程中,发布者等待所有监听器完成。这提供了强有力的保证,但限制了可扩展性。

通过启用异步支持并注解监听器来使监听器异步:

@Configuration
@EnableAsync
public class AsyncConfig {
    @Bean(name = "eventExecutor")
    public Executor eventExecutor() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setCorePoolSize(4);
        executor.setMaxPoolSize(10);
        executor.setQueueCapacity(100);
        executor.setThreadNamePrefix("event-");
        executor.initialize();
        return executor;
    }
}
 
@Component
public class OrderEventListeners {
    // ... 依赖 ...
     
    @Async("eventExecutor")
    @EventListener
    @Transactional(propagation = Propagation.REQUIRES_NEW)
    public void handleOrderPlaced(OrderPlacedEvent event) {
        shippingService.createShipment(event.getOrderId());
    }
     
    @Async("eventExecutor")
    @EventListener
    public void sendConfirmationEmail(OrderPlacedEvent event) {
        emailService.sendOrderConfirmation(event.getOrderId());
    }
}

使用 @AsynccreateOrder() 方法在发布事件后立即返回。监听器在线程池中并发执行。这显著提高了响应时间——订单创建不再等待电子邮件发送或分析跟踪。

但异步事件引入了新的复杂性。当监听器执行时,订单创建事务可能尚未提交。监听器可能尝试从数据库加载订单,但由于事务仍在进行中而找不到它。

Spring 提供了 @TransactionalEventListener 来处理这种情况:

@Component
public class OrderEventListeners {
    @Async("eventExecutor")
    @TransactionalEventListener(phase = TransactionPhase.AFTER_COMMIT)
    public void handleOrderPlaced(OrderPlacedEvent event) {
        // 这仅在订单创建事务成功提交后运行
        shippingService.createShipment(event.getOrderId());
    }
}

AFTER_COMMIT 阶段确保监听器仅在发布事务成功提交后运行。如果订单创建失败并回滚,监听器永远不会执行。这可以防止处理实际上不存在的订单的事件。

实现事件存储

随着事件驱动架构的成熟,存储事件变得有价值。事件存储提供了审计日志,支持调试,并支持更复杂的模式,如事件溯源。

创建一个简单的事件存储:

@Entity
@Table(name = "domain_events")
public class StoredEvent {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;
     
    @Column(nullable = false)
    private String eventId;
     
    @Column(nullable = false)
    private String eventType;
     
    @Column(nullable = false, columnDefinition = "TEXT")
    private String payload;
     
    @Column(nullable = false)
    private Instant occurredAt;
     
    @Column(nullable = false)
    private Instant storedAt;
     
    @Column
    private String aggregateId;
     
    @Column
    private String aggregateType;
     
    // 构造器、getter、setter
}
 
@Repository
public interface StoredEventRepository extends JpaRepository<StoredEvent, Long> {
    List<StoredEvent> findByAggregateIdOrderByOccurredAt(String aggregateId);
    List<StoredEvent> findByEventType(String eventType);
}

拦截并存储所有领域事件:

@Component
public class EventStoreListener {
    private final StoredEventRepository repository;
    private final ObjectMapper objectMapper;
     
    public EventStoreListener(StoredEventRepository repository, ObjectMapper objectMapper) {
        this.repository = repository;
        this.objectMapper = objectMapper;
    }
     
    @EventListener
    @Order(Ordered.HIGHEST_PRECEDENCE) // 在其他监听器之前存储
    @Transactional(propagation = Propagation.REQUIRES_NEW)
    public void storeEvent(DomainEvent event) {
        try {
            StoredEvent stored = new StoredEvent();
            stored.setEventId(event.getEventId());
            stored.setEventType(event.getClass().getSimpleName());
            stored.setPayload(objectMapper.writeValueAsString(event));
            stored.setOccurredAt(event.getOccurredAt());
            stored.setStoredAt(Instant.now());
             
            // 如果可用,提取聚合信息
            if (event instanceof OrderPlacedEvent) {
                OrderPlacedEvent orderEvent = (OrderPlacedEvent) event;
                stored.setAggregateId(orderEvent.getOrderId().toString());
                stored.setAggregateType("Order");
            }
             
            repository.save(stored);
        } catch (JsonProcessingException e) {
            throw new EventStoreException("Failed to serialize event", e);
        }
    }
}

现在,每个领域事件在业务逻辑处理之前都会持久化。您可以通过重放事件来重建系统中发生的情况:

@Service
public class OrderHistoryService {
    private final StoredEventRepository eventRepository;
     
    public List<OrderEvent> getOrderHistory(Long orderId) {
        List<StoredEvent> events = eventRepository.findByAggregateIdOrderByOccurredAt(
            orderId.toString()
        );
         
        return events.stream()
            .map(this::deserializeEvent)
            .collect(Collectors.toList());
    }
     
    private OrderEvent deserializeEvent(StoredEvent stored) {
        // 根据事件类型反序列化
        try {
            Class<?> eventClass = Class.forName("com.example.events." + stored.getEventType());
            return (OrderEvent) objectMapper.readValue(stored.getPayload(), eventClass);
        } catch (Exception e) {
            throw new EventStoreException("Failed to deserialize event", e);
        }
    }
}

这实现了强大的调试能力。当客户报告其订单问题时,您可以准确看到发生了什么事件以及发生的顺序。

Saga 和补偿操作

某些工作流需要跨多个步骤进行协调,其中每个步骤都可能失败。传统方法使用分布式事务,但这些方法扩展性不佳且增加了复杂性。Saga 使用编排事件和补偿操作提供了一种替代方案。

考虑一个更复杂的订单流程,您需要:

  1. 预留库存
  2. 处理支付
  3. 创建发货单

如果在预留库存后支付失败,您需要释放预留。通过补偿事件实现这一点:

public class InventoryReservedEvent extends DomainEvent {
    private final Long orderId;
    private final List<ReservationDetail> reservations;
     
    // 构造器、getter
}
 
public class PaymentFailedEvent extends DomainEvent {
    private final Long orderId;
    private final String reason;
     
    // 构造器、getter
}
 
@Component
public class InventorySagaHandler {
    private final InventoryService inventoryService;
     
    @EventListener
    public void handlePaymentFailed(PaymentFailedEvent event) {
        // 补偿操作:释放预留库存
        inventoryService.releaseReservation(event.getOrderId());
    }
}

Saga 通过事件而不是中央协调器进行协调:

@Service
public class OrderSagaService {
    private final ApplicationEventPublisher eventPublisher;
    private final InventoryService inventoryService;
    private final PaymentService paymentService;
     
    public void processOrder(Order order) {
        // 步骤 1: 预留库存
        List<ReservationDetail> reservations = inventoryService.reserve(order.getItems());
        eventPublisher.publishEvent(new InventoryReservedEvent(order.getId(), reservations));
         
        try {
            // 步骤 2: 处理支付
            PaymentResult payment = paymentService.processPayment(order);
             
            if (payment.isSuccessful()) {
                eventPublisher.publishEvent(new PaymentSucceededEvent(order.getId(), payment));
            } else {
                // 触发补偿
                eventPublisher.publishEvent(new PaymentFailedEvent(order.getId(), payment.getReason()));
                throw new PaymentException(payment.getReason());
            }
        } catch (Exception e) {
            // 触发补偿
            eventPublisher.publishEvent(new PaymentFailedEvent(order.getId(), e.getMessage()));
            throw e;
        }
    }
}

这种模式在没有分布式事务的情况下保持了一致性。每个步骤发布记录所发生事件的事件。当发生故障时,补偿事件会触发撤销先前步骤的操作。

桥接到外部消息代理

随着单体应用的增长,您可能希望与外部系统集成或为最终的服务提取做准备。Spring Cloud Stream 提供了对 RabbitMQ 或 Kafka 等消息代理的抽象,同时保持相同的事件驱动模式:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-stream</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>

application.yml 中配置绑定:

spring:
  cloud:
    stream:
      bindings:
        orderPlaced-out-0:
          destination: order.placed
        orderPlaced-in-0:
          destination: order.placed
          group: order-processors
      kafka:
        binder:
          brokers: localhost:9092

创建内部事件和外部消息之间的桥接:

@Component
public class EventPublisher {
    private final StreamBridge streamBridge;
     
    public EventPublisher(StreamBridge streamBridge) {
        this.streamBridge = streamBridge;
    }
     
    @EventListener
    public void publishToExternalBroker(OrderPlacedEvent event) {
        // 将内部事件发布到外部消息代理
        streamBridge.send("orderPlaced-out-0", event);
    }
}
 
@Component
public class ExternalEventConsumer {
    private final ApplicationEventPublisher eventPublisher;
     
    public ExternalEventConsumer(ApplicationEventPublisher eventPublisher) {
        this.eventPublisher = eventPublisher;
    }
     
    @Bean
    public Consumer<OrderPlacedEvent> orderPlaced() {
        return event -> {
            // 将外部事件重新发布为内部事件
            eventPublisher.publishEvent(event);
        };
    }
}

这种模式让您可以选择性地将事件发布到外部,同时将内部事件保留在本地。关键的实时操作使用内部事件以实现低延迟。跨服务通信使用消息代理以实现可靠性和可扩展性。

监控与可观测性

事件驱动系统引入了新的可观测性挑战。理解正在发生的情况需要跨多个异步处理步骤跟踪事件。实施全面的日志记录和指标:

@Aspect
@Component
public class EventMonitoringAspect {
    private static final Logger logger = LoggerFactory.getLogger(EventMonitoringAspect.class);
    private final MeterRegistry meterRegistry;
     
    public EventMonitoringAspect(MeterRegistry meterRegistry) {
        this.meterRegistry = meterRegistry;
    }
     
    @Around("@annotation(org.springframework.context.event.EventListener)")
    public Object monitorEventListener(ProceedingJoinPoint joinPoint) throws Throwable {
        String listenerName = joinPoint.getSignature().getName();
        Object[] args = joinPoint.getArgs();
        DomainEvent event = (DomainEvent) args[0];
         
        Timer.Sample sample = Timer.start(meterRegistry);
         
        try {
            logger.info("Processing event {} in listener {}", 
                event.getEventId(), listenerName);
             
            Object result = joinPoint.proceed();
             
            sample.stop(Timer.builder("event.listener.duration")
                .tag("listener", listenerName)
                .tag("event_type", event.getClass().getSimpleName())
                .tag("status", "success")
                .register(meterRegistry));
             
            meterRegistry.counter("event.listener.processed",
                "listener", listenerName,
                "event_type", event.getClass().getSimpleName(),
                "status", "success"
            ).increment();
             
            return result;
        } catch (Exception e) {
            sample.stop(Timer.builder("event.listener.duration")
                .tag("listener", listenerName)
                .tag("event_type", event.getClass().getSimpleName())
                .tag("status", "failure")
                .register(meterRegistry));
             
            meterRegistry.counter("event.listener.processed",
                "listener", listenerName,
                "event_type", event.getClass().getSimpleName(),
                "status", "failure"
            ).increment();
             
            logger.error("Error processing event {} in listener {}", 
                event.getEventId(), listenerName, e);
             
            throw e;
        }
    }
}

这个切面自动跟踪每个事件监听器的执行时间和成功率。结合 Prometheus 和 Grafana 等工具,您可以可视化事件处理模式并识别瓶颈。

添加关联 ID 以跟踪系统中的事件:

public abstract class DomainEvent {
    private final Instant occurredAt;
    private final String eventId;
    private final String correlationId;
     
    protected DomainEvent(String correlationId) {
        this.occurredAt = Instant.now();
        this.eventId = UUID.randomUUID().toString();
        this.correlationId = correlationId != null ? correlationId : UUID.randomUUID().toString();
    }
     
    // Getters
}

通过事件链传播关联 ID:

@EventListener
public void handleOrderPlaced(OrderPlacedEvent event) {
    MDC.put("correlationId", event.getCorrelationId());
     
    try {
        // 执行工作
         
        // 发布具有相同关联 ID 的后续事件
        eventPublisher.publishEvent(new ShipmentCreatedEvent(
            event.getOrderId(),
            event.getCorrelationId()
        ));
    } finally {
        MDC.clear();
    }
}

现在,与单个订单流相关的所有日志消息共享一个关联 ID,使得跨多个异步操作跟踪整个工作流变得微不足道。

测试事件驱动代码

事件驱动架构需要不同的测试策略。传统的单元测试适用于单个监听器,但集成测试对于验证事件流变得更加重要:

@SpringBootTest
@TestConfiguration
public class OrderEventIntegrationTest {
    @Autowired
    private ApplicationEventPublisher eventPublisher;
     
    @Autowired
    private ShippingService shippingService;
     
    @Autowired
    private EmailService emailService;
     
    @Test
    public void shouldProcessOrderPlacedEventCompletely() throws Exception {
        // 给定
        Order order = createTestOrder();
        OrderPlacedEvent event = new OrderPlacedEvent(order);
         
        // 当
        eventPublisher.publishEvent(event);
         
        // 等待异步处理
        await().atMost(5, TimeUnit.SECONDS).untilAsserted(() -> {
            // 然后
            verify(shippingService).createShipment(order.getId());
            verify(emailService).sendOrderConfirmation(order.getId());
        });
    }
}

对于单元测试,注入一个间谍事件发布器以验证事件是否正确发布:

@ExtendWith(MockitoExtension.class)
public class OrderServiceTest {
    @Mock
    private OrderRepository orderRepository;
     
    @Mock
    private InventoryService inventoryService;
     
    @Mock
    private PaymentService paymentService;
     
    @Spy
    private ApplicationEventPublisher eventPublisher = new SimpleApplicationEventPublisher();
     
    @InjectMocks
    private OrderService orderService;
     
    @Test
    public void shouldPublishOrderPlacedEventAfterCreatingOrder() {
        // 给定
        CreateOrderRequest request = createValidRequest();
         
        when(inventoryService.checkAvailability(any(), anyInt())).thenReturn(true);
        when(paymentService.processPayment(any(), any(), any()))
            .thenReturn(PaymentResult.successful("txn-123"));
        when(orderRepository.save(any())).thenAnswer(inv -> inv.getArgument(0));
         
        // 当
        orderService.createOrder(request);
         
        // 然后
        verify(eventPublisher).publishEvent(argThat(event -> 
            event instanceof OrderPlacedEvent
        ));
    }
}

迁移之旅

将单体应用重构为使用事件驱动架构并非全有或全无的命题。从一个工作流开始——通常是造成最多痛苦的那个。识别可以事件驱动的直接服务调用,并逐步引入事件。

从同步事件开始,以最小化行为变更。一旦事件正确流动,为非关键监听器切换到异步处理。当您需要审计跟踪或调试能力时,添加事件存储。仅当您需要跨服务通信或准备提取微服务时,才集成外部消息代理。

目标不是实现完美的事件驱动架构。而是减少耦合、提高可测试性,并在组件之间创建更清晰的边界。即使是部分采用也能提供价值——具有一些事件驱动模式的单体应用比完全没有的模式更易于维护。

这种渐进式方法使您能够持续交付价值,而不是投入一个需要数月时间、直到完全结束时才能交付任何成果的重构项目。您能够了解在特定领域和团队中哪些方法有效,根据实际经验而非理论理想来调整实施策略。

有用的资源

  • Spring 应用事件:https://docs.spring.io/spring-framework/reference/core/beans/context-introduction.html#context-functionality-events 关于应用事件系统以及如何有效使用它的官方 Spring 文档。
  • Spring Cloud Stream:https://spring.io/projects/spring-cloud-stream 用于构建事件驱动微服务的框架,在桥接到外部消息代理时很有用。
  • Eric Evans 的《领域驱动设计》:https://www.domainlanguage.com/ddd/ 理解事件驱动系统中的领域事件和限界上下文的必读材料。
  • 企业集成模式:https://www.enterpriseintegrationpatterns.com/ 适用于事件驱动架构的消息传递模式的全面目录。
  • Micrometer:https://micrometer.io/ 用于监控事件处理和系统行为的应用指标库。
  • Awaitility:https://github.com/awaitility/awaitility 用于异步系统的测试库,对于事件驱动代码的集成测试至关重要。

【注】本文译自: Event-Driven Architecture in Monoliths: Incremental Refactoring for Java Apps - Java Code Geeks