11.把NameNode的数据从hadoop103同步到hadoop104中
在hadoop104上执行命令:/usr/local/hadoop/bin/hdfs namenode –bootstrapStandby
命令输出:
[root@hadoop104 hadoop]# /usr/local/hadoop/bin/hdfs namenode -bootstrapStandby
14/02/12 08:28:30 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = hadoop104/192.168.80.104
STARTUP_MSG: args = [-bootstrapStandby]
STARTUP_MSG: version = 2.2.0
STARTUP_MSG: classpath = /usr/local/hadoop/etc/hadoop:/usr/local/hadoop/share/hadoop/common/lib/protobuf-java-2.5.0.jar:/usr/local/hadoop/share/hadoop/common/lib/snappy-java-1.0.4.1.jar:/usr/local/hadoop/share/hadoop/common/lib/jsch-0.1.42.jar:/usr/local/hadoop/share/hadoop/common/lib/jersey-server-1.9.jar:/usr/local/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-digester-1.8.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-cli-1.2.jar:/usr/local/hadoop/share/hadoop/common/lib/jackson-core-asl-1.8.8.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-el-1.0.jar:/usr/local/hadoop/share/hadoop/common/lib/jets3t-0.6.1.jar:/usr/local/hadoop/share/hadoop/common/lib/jersey-core-1.9.jar:/usr/local/hadoop/share/hadoop/common/lib/slf4j-api-1.7.5.jar:/usr/local/hadoop/share/hadoop/common/lib/xz-1.0.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-lang-2.5.jar:/usr/local/hadoop/share/hadoop/common/lib/jasper-runtime-5.5.23.jar:/usr/local/hadoop/share/hadoop/common/lib/jackson-xc-1.8.8.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-codec-1.4.jar:/usr/local/hadoop/share/hadoop/common/lib/activation-1.1.jar:/usr/local/hadoop/share/hadoop/common/lib/avro-1.7.4.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-httpclient-3.1.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-beanutils-1.7.0.jar:/usr/local/hadoop/share/hadoop/common/lib/hadoop-annotations-2.2.0.jar:/usr/local/hadoop/share/hadoop/common/lib/jsp-api-2.1.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-compress-1.4.1.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-beanutils-core-1.8.0.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-configuration-1.6.jar:/usr/local/hadoop/share/hadoop/common/lib/jaxb-impl-2.2.3-1.jar:/usr/local/hadoop/share/hadoop/common/lib/zookeeper-3.4.5.jar:/usr/local/hadoop/share/hadoop/common/lib/hadoop-auth-2.2.0.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-io-2.1.jar:/usr/local/hadoop/share/hadoop/common/lib/netty-3.6.2.Final.jar:/usr/local/hadoop/share/hadoop/common/lib/stax-api-1.0.1.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-collections-3.2.1.jar:/usr/local/hadoop/share/hadoop/common/lib/servlet-api-2.5.jar:/usr/local/hadoop/share/hadoop/common/lib/junit-4.8.2.jar:/usr/local/hadoop/share/hadoop/common/lib/jetty-util-6.1.26.jar:/usr/local/hadoop/share/hadoop/common/lib/jackson-mapper-asl-1.8.8.jar:/usr/local/hadoop/share/hadoop/common/lib/jsr305-1.3.9.jar:/usr/local/hadoop/share/hadoop/common/lib/mockito-all-1.8.5.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-logging-1.1.1.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-math-2.1.jar:/usr/local/hadoop/share/hadoop/common/lib/jaxb-api-2.2.2.jar:/usr/local/hadoop/share/hadoop/common/lib/jersey-json-1.9.jar:/usr/local/hadoop/share/hadoop/common/lib/asm-3.2.jar:/usr/local/hadoop/share/hadoop/common/lib/commons-net-3.1.jar:/usr/local/hadoop/share/hadoop/common/lib/jetty-6.1.26.jar:/usr/local/hadoop/share/hadoop/common/lib/jasper-compiler-5.5.23.jar:/usr/local/hadoop/share/hadoop/common/lib/guava-11.0.2.jar:/usr/local/hadoop/share/hadoop/common/lib/xmlenc-0.52.jar:/usr/local/hadoop/share/hadoop/common/lib/log4j-1.2.17.jar:/usr/local/hadoop/share/hadoop/common/lib/paranamer-2.3.jar:/usr/local/hadoop/share/hadoop/common/lib/jackson-jaxrs-1.8.8.jar:/usr/local/hadoop/share/hadoop/common/lib/jettison-1.1.jar:/usr/local/hadoop/share/hadoop/common/hadoop-common-2.2.0-tests.jar:/usr/local/hadoop/share/hadoop/common/hadoop-common-2.2.0.jar:/usr/local/hadoop/share/hadoop/common/hadoop-nfs-2.2.0.jar:/usr/local/hadoop/share/hadoop/hdfs:/usr/local/hadoop/share/hadoop/hdfs/lib/protobuf-java-2.5.0.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/jersey-server-1.9.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/commons-cli-1.2.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/jackson-core-asl-1.8.8.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/commons-el-1.0.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/jersey-core-1.9.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/commons-daemon-1.0.13.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/commons-lang-2.5.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/jasper-runtime-5.5.23.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/commons-codec-1.4.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/jsp-api-2.1.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/commons-io-2.1.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/netty-3.6.2.Final.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/servlet-api-2.5.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/jetty-util-6.1.26.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/jackson-mapper-asl-1.8.8.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/jsr305-1.3.9.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/commons-logging-1.1.1.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/asm-3.2.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/jetty-6.1.26.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/guava-11.0.2.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/xmlenc-0.52.jar:/usr/local/hadoop/share/hadoop/hdfs/lib/log4j-1.2.17.jar:/usr/local/hadoop/share/hadoop/hdfs/hadoop-hdfs-nfs-2.2.0.jar:/usr/local/hadoop/share/hadoop/hdfs/hadoop-hdfs-2.2.0-tests.jar:/usr/local/hadoop/share/hadoop/hdfs/hadoop-hdfs-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/lib/protobuf-java-2.5.0.jar:/usr/local/hadoop/share/hadoop/yarn/lib/snappy-java-1.0.4.1.jar:/usr/local/hadoop/share/hadoop/yarn/lib/jersey-server-1.9.jar:/usr/local/hadoop/share/hadoop/yarn/lib/guice-3.0.jar:/usr/local/hadoop/share/hadoop/yarn/lib/jackson-core-asl-1.8.8.jar:/usr/local/hadoop/share/hadoop/yarn/lib/jersey-core-1.9.jar:/usr/local/hadoop/share/hadoop/yarn/lib/xz-1.0.jar:/usr/local/hadoop/share/hadoop/yarn/lib/hamcrest-core-1.1.jar:/usr/local/hadoop/share/hadoop/yarn/lib/avro-1.7.4.jar:/usr/local/hadoop/share/hadoop/yarn/lib/aopalliance-1.0.jar:/usr/local/hadoop/share/hadoop/yarn/lib/hadoop-annotations-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/lib/commons-compress-1.4.1.jar:/usr/local/hadoop/share/hadoop/yarn/lib/javax.inject-1.jar:/usr/local/hadoop/share/hadoop/yarn/lib/guice-servlet-3.0.jar:/usr/local/hadoop/share/hadoop/yarn/lib/commons-io-2.1.jar:/usr/local/hadoop/share/hadoop/yarn/lib/netty-3.6.2.Final.jar:/usr/local/hadoop/share/hadoop/yarn/lib/jackson-mapper-asl-1.8.8.jar:/usr/local/hadoop/share/hadoop/yarn/lib/asm-3.2.jar:/usr/local/hadoop/share/hadoop/yarn/lib/junit-4.10.jar:/usr/local/hadoop/share/hadoop/yarn/lib/jersey-guice-1.9.jar:/usr/local/hadoop/share/hadoop/yarn/lib/log4j-1.2.17.jar:/usr/local/hadoop/share/hadoop/yarn/lib/paranamer-2.3.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-api-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-server-tests-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-site-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-client-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-server-nodemanager-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-server-resourcemanager-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-server-web-proxy-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-applications-unmanaged-am-launcher-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-server-common-2.2.0.jar:/usr/local/hadoop/share/hadoop/yarn/hadoop-yarn-common-2.2.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/protobuf-java-2.5.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/snappy-java-1.0.4.1.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/jersey-server-1.9.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/guice-3.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/jackson-core-asl-1.8.8.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/jersey-core-1.9.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/xz-1.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/hamcrest-core-1.1.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/avro-1.7.4.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/aopalliance-1.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/hadoop-annotations-2.2.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/commons-compress-1.4.1.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/javax.inject-1.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/guice-servlet-3.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/commons-io-2.1.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/netty-3.6.2.Final.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/jackson-mapper-asl-1.8.8.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/asm-3.2.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/junit-4.10.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/jersey-guice-1.9.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/log4j-1.2.17.jar:/usr/local/hadoop/share/hadoop/mapreduce/lib/paranamer-2.3.jar:/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-plugins-2.2.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.2.0-tests.jar:/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.2.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-app-2.2.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.2.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-shuffle-2.2.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-2.2.0.jar:/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.2.0.jar:/usr/local/hadoop/contrib/capacity-scheduler/*.jar
STARTUP_MSG: build = Unknown -r Unknown; compiled by 'root' on 2013-12-26T08:50Z
STARTUP_MSG: java = 1.7.0_45
************************************************************/
14/02/12 08:28:35 INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT]
=====================================================
About to bootstrap Standby ID hadoop104 from:
Nameservice ID: cluster2
Other Namenode ID: hadoop103
Other NN's HTTP address: hadoop103:50070
Other NN's IPC address: hadoop103/192.168.80.103:9000
Namespace ID: 698609742
Block pool ID: BP-1304582337-192.168.80.103-1392164613254
Cluster ID: c2
Layout version: -47
=====================================================
14/02/12 08:28:39 INFO common.Storage: Storage directory /usr/local/hadoop/tmp/dfs/name has been successfully formatted.
14/02/12 08:28:39 INFO namenode.TransferFsImage: Opening connection tohttp://hadoop103:50070/getp_w_picpath?getp_w_picpath=1&txid=0&storageInfo=-47:698609742:0:c2
14/02/12 08:28:40 INFO namenode.TransferFsImage: Transfer took 0.67s at 0.00 KB/s
14/02/12 08:28:40 INFO namenode.TransferFsImage: Downloaded file fsp_w_picpath.ckpt_0000000000000000000 size 196 bytes.
14/02/12 08:28:40 INFO util.ExitUtil: Exiting with status 0
14/02/12 08:28:40 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop104/192.168.80.104
************************************************************/
验证:
[root@hadoop104 hadoop]# pwd
/usr/local/hadoop
[root@hadoop104 hadoop]# ls tmp/
dfs
[root@hadoop104 hadoop]# ls tmp/dfs/
name
[root@hadoop104 hadoop]#
12.启动c2中另一个Namenode
在hadoop104上执行命令:/usr/local/hadoop/sbin/hadoop-daemon.sh start namenode
命令输出:
[root@hadoop104 hadoop]# /usr/local/hadoop/sbin/hadoop-daemon.sh start namenode
starting namenode, logging to /usr/local/hadoop/logs/hadoop-root-namenode-hadoop104.out
[root@hadoop104 hadoop]#
验证:
[root@hadoop104 hadoop]# jps
8822 NameNode
8975 Jps
[root@hadoop104 hadoop]#
也可以通过浏览器访问http://hadoop104:50070,可以看到如上图页面,此处省略截图。
13.启动所有的DataNode
在hadoop101上执行命令:/usr/local/hadoop/sbin/hadoop-daemons.sh start datanode
命令输出:
[root@hadoop101 hadoop]# /usr/local/hadoop/sbin/hadoop-daemons.sh start datanode
hadoop101: starting datanode, logging to /usr/local/hadoop/logs/hadoop-root-datanode-hadoop101.out
hadoop103: starting datanode, logging to /usr/local/hadoop/logs/hadoop-root-datanode-hadoop103.out
hadoop102: starting datanode, logging to /usr/local/hadoop/logs/hadoop-root-datanode-hadoop102.out
hadoop104: starting datanode, logging to /usr/local/hadoop/logs/hadoop-root-datanode-hadoop104.out
[root@hadoop101 hadoop]#
【上述命令会在四个节点分别启动DataNode进程】
验证(以hadoop101为例):
[root@hadoop101 hadoop]# jps
23396 JournalNode
24302 Jps
24232 DataNode
23558 NameNode
22491 QuorumPeerMain
[root@hadoop101 hadoop]#
【可以看到java进程DataNode】
14.启动Yarn
在hadoop101上执行命令:/usr/local/hadoop/sbin/start-yarn.sh
命令输出:
[root@hadoop101 hadoop]# /usr/local/hadoop/sbin/start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /usr/local/hadoop/logs/yarn-root-resourcemanager-hadoop101.out
hadoop104: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-root-nodemanager-hadoop104.out
hadoop103: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-root-nodemanager-hadoop103.out
hadoop102: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-root-nodemanager-hadoop102.out
hadoop101: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-root-nodemanager-hadoop101.out
[root@hadoop101 hadoop]#
验证:
[root@hadoop101 hadoop]# jps
23396 JournalNode
25154 ResourceManager
25247 NodeManager
24232 DataNode
23558 NameNode
22491 QuorumPeerMain
25281 Jps
[root@hadoop101 hadoop]#
【产生java进程ResourceManager和NodeManager】
也可以通过浏览器访问,如下图
15.启动ZooKeeperFailoverController
在hadoop101、hadoop102、hadoop103、hadoop104上分别执行命令:/usr/local/hadoop/sbin/hadoop-daemon.sh start zkfc
命令输出(以hadoop101为例):
[root@hadoop101 hadoop]# /usr/local/hadoop/sbin/hadoop-daemon.sh start zkfc
starting zkfc, logging to /usr/local/hadoop/logs/hadoop-root-zkfc-hadoop101.out
[root@hadoop101 hadoop]#
验证(以hadoop101为例):
[root@hadoop101 hadoop]# jps
24599 DFSZKFailoverController
23396 JournalNode
24232 DataNode
23558 NameNode
22491 QuorumPeerMain
24654 Jps
[root@hadoop101 hadoop]#
【产生java进程DFSZKFailoverController】
16.验证HDFS是否好用
在任意一个节点上执行以下命令(这里以hadoop101为例),把数据上传到HDFS集群中
[root@hadoop101 hadoop]# pwd
/usr/local/hadoop/etc/hadoop
[root@hadoop101 hadoop]# ls
capacity-scheduler.xml hadoop-metrics.properties httpfs-site.xml ssl-server.xml.example
configuration.xsl hadoop-policy.xml log4j.properties startall.sh
container-executor.cfg hdfs2-site.xml mapred-env.sh yarn-env.sh
core-site.xml hdfs-site.xml mapred-queues.xml.template yarn-site.xml
fairscheduler.xml httpfs-env.sh mapred-site.xml zookeeper.out
hadoop-env.sh httpfs-log4j.properties slaves
hadoop-metrics2.properties httpfs-signature.secret ssl-client.xml.example
[root@hadoop101 hadoop]# hadoop fs -put core-site.xml /
【上传到集群中,默认是上传到HDFS联盟的c1集群中】
验证:
[root@hadoop101 hadoop]# hadoop fs -ls /
Found 1 items
-rw-r--r-- 2 root supergroup 446 2014-02-12 09:00 /core-site.xml
[root@hadoop101 hadoop]#
也可以通过浏览器查看,数据默认是放在第一个集群中的
17.验证Yarn是否好用
在hadoop101上执行以下命令 hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /core-site.xml /out
命令输出:
[root@hadoop101 hadoop]# hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /core-site.xml /out
14/02/12 11:43:55 INFO client.RMProxy: Connecting to ResourceManager at hadoop101/192.168.80.101:8032
14/02/12 11:43:59 INFO input.FileInputFormat: Total input paths to process : 1
14/02/12 11:43:59 INFO mapreduce.JobSubmitter: number of splits:1
14/02/12 11:43:59 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
14/02/12 11:43:59 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/02/12 11:43:59 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
14/02/12 11:43:59 INFO Configuration.deprecation: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
14/02/12 11:43:59 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
14/02/12 11:43:59 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
14/02/12 11:43:59 INFO Configuration.deprecation: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
14/02/12 11:43:59 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
14/02/12 11:43:59 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
14/02/12 11:43:59 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/02/12 11:43:59 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
14/02/12 11:43:59 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
14/02/12 11:44:01 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1392169506119_0002
14/02/12 11:44:04 INFO impl.YarnClientImpl: Submitted application application_1392169506119_0002 to ResourceManager at hadoop101/192.168.80.101:8032
14/02/12 11:44:05 INFO mapreduce.Job: The url to track the job:http://hadoop101:8088/proxy/application_1392169506119_0002/
14/02/12 11:44:05 INFO mapreduce.Job: Running job: job_1392169506119_0002
14/02/12 11:44:41 INFO mapreduce.Job: Job job_1392169506119_0002 running in uber mode : false
14/02/12 11:44:41 INFO mapreduce.Job: map 0% reduce 0%
14/02/12 11:45:37 INFO mapreduce.Job: map 100% reduce 0%
14/02/12 11:46:54 INFO mapreduce.Job: map 100% reduce 100%
14/02/12 11:47:01 INFO mapreduce.Job: Job job_1392169506119_0002 completed successfully
14/02/12 11:47:02 INFO mapreduce.Job: Counters: 43
File System Counters
FILE: Number of bytes read=472
FILE: Number of bytes written=164983
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=540
HDFS: Number of bytes written=402
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=63094
Total time spent by all reduces in occupied slots (ms)=57228
Map-Reduce Framework
Map input records=17
Map output records=20
Map output bytes=496
Map output materialized bytes=472
Input split bytes=94
Combine input records=20
Combine output records=16
Reduce input groups=16
Reduce shuffle bytes=472
Reduce input records=16
Reduce output records=16
Spilled Records=32
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=632
CPU time spent (ms)=3010
Physical memory (bytes) snapshot=255528960
Virtual memory (bytes) snapshot=1678471168
Total committed heap usage (bytes)=126660608
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=446
File Output Format Counters
Bytes Written=402
[root@hadoop101 hadoop]#
验证:
[root@hadoop101 hadoop]# hadoop fs -ls /out
Found 2 items
-rw-r--r-- 2 root supergroup 0 2014-02-12 11:46 /out/_SUCCESS
-rw-r--r-- 2 root supergroup 402 2014-02-12 11:46 /out/part-r-00000
[root@hadoop101 hadoop]# hadoop fs -text /out/part-r-00000
</configuration> 1
</property> 3
<?xml 1
<?xml-stylesheet 1
<configuration> 1
<name>fs.defaultFS</name> 1
<name>ha.zookeeper.quorum</name> 1
<name>hadoop.tmp.dir</name> 1
<property> 3
<value>/usr/local/hadoop/tmp</value> 1
<value>hadoop101:2181,hadoop102:2181,hadoop103:2181</value> 1
<value>hdfs://cluster1</value> 1
encoding="UTF-8"?> 1
href="configuration.xsl"?> 1
type="text/xsl" 1
version="1.0" 1
[root@hadoop101 hadoop]#
18.验证HA的故障自动转移是否好用
观察cluster1的两个NameNode的状态,hadoop101的状态是standby,hadoop102的状态是active,如下图。
下面我们杀死hadoop102的NameNode进程,观察hadoop101的状态是否会自动切换成active。
在hadoop102执行以下命令
[root@hadoop102 hadoop]# jps
13389 DFSZKFailoverController
12355 JournalNode
13056 DataNode
15660 Jps
14496 NodeManager
12573 NameNode
12081 QuorumPeerMain
[root@hadoop102 hadoop]# kill -9 12573
[root@hadoop102 hadoop]# jps
13389 DFSZKFailoverController
12355 JournalNode
13056 DataNode
14496 NodeManager
15671 Jps
12081 QuorumPeerMain
[root@hadoop102 hadoop]#
再观察页面,发现如下图所示
证明HDFS的高可靠是可用的。
结语以上是hadoop2.2.0的HDFS集群HA配置和自动切换、HDFS federation配置、Yarn配置的详细过程,大家可以根据以上步骤搭建。在搭建过程中,一定要注意命令的执行顺序和每一步的验证工作。
对于以上的这套安装步骤,是作者在尝试很多遍不同配置方法之后总结出来的,尽可能的减少配置参数,并对其中的各项配置参数进行了详细注释,帮助大家了解搭建原理。
对于linux环境服务器如何准备、hadoop2.2.0在64位平台如何编译源代码、以及操作,请关注吴超沉思录,近期会推出视频教程,更加详细,更加完整,更加实用。
本教程是作者一边执行步骤、一边录制脚本、一边截图、一边写文档,非常耗费精力,花费约六个小时完成的。请尊重作者劳动,转载注明出处。