sklearn linear_model,svm,tree,naive bayes,ensemble by iris dataset
from sklearn import datasets import numpy as np from sklearn.model_selection import train_test_split iris =datasets.load_iris() # print(iris.data) X = iris.data[:,[2,3]] y =iris.target X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=0) print(X_train.shape,y_train.shape,X_test.shape,y_test.shape) print(X_train,y_train,X_test,y_test)
(105, 2) (105,) (45, 2) (45,) [[ 3.5 1. ] [ 5.5 1.8] [ 5.7 2.5] [ 5. 1.5] [ 5.8 1.8] [ 3.9 1.1] [ 6.1 2.3] [ 4.7 1.6] [ 3.8 1.1] [ 4.9 1.8] [ 5.1 1.5] [ 4.5 1.7] [ 5. 1.9] [ 4.7 1.4] [ 5.2 2. ] [ 4.5 1.6] [ 1.6 0.2] [ 5.1 1.9] [ 4.2 1.3] [ 3.6 1.3] [ 4. 1.3] [ 4.6 1.4] [ 6. 1.8] [ 1.5 0.2] [ 1.1 0.1] [ 5.3 1.9] [ 4.2 1.2] [ 1.7 0.2] [ 1.5 0.4] [ 4.9 1.5] [ 1.5 0.2] [ 5.1 1.8] [ 3. 1.1] [ 1.4 0.3] [ 4.5 1.5] [ 6.1 2.5] [ 4.2 1.3] [ 1.4 0.1] [ 5.9 2.1] [ 5.7 2.3] [ 5.8 2.2] [ 5.6 2.1] [ 1.6 0.2] [ 1.6 0.2] [ 5.1 2. ] [ 5.7 2.1] [ 1.3 0.3] [ 5.4 2.3] [ 1.4 0.2] [ 5. 2. ] [ 5.4 2.1] [ 1.3 0.2] [ 1.4 0.2] [ 5.8 1.6] [ 1.4 0.3] [ 1.3 0.2] [ 1.7 0.4] [ 4. 1.3] [ 5.9 2.3] [ 6.6 2.1] [ 1.4 0.2] [ 1.5 0.1] [ 1.4 0.2] [ 4.5 1.3] [ 4.4 1.4] [ 1.2 0.2] [ 1.7 0.5] [ 4.3 1.3] [ 1.5 0.4] [ 6.9 2.3] [ 3.3 1. ] [ 6.4 2. ] [ 4.4 1.4] [ 1.5 0.1] [ 4.8 1.8] [ 1.2 0.2] [ 6.7 2. ] [ 1.5 0.3] [ 1.6 0.2] [ 6.1 1.9] [ 1.4 0.2] [ 5.6 2.4] [ 4.1 1.3] [ 3.9 1.2] [ 3.5 1. ] [ 5.3 2.3] [ 5.2 2.3] [ 4.9 1.5] [ 5. 1.7] [ 1.6 0.2] [ 3.7 1. ] [ 5.6 2.4] [ 5.1 1.9] [ 1.5 0.2] [ 4.6 1.3] [ 4.1 1.3] [ 4.8 1.8] [ 4.4 1.3] [ 1.3 0.2] [ 1.5 0.4] [ 1.5 0.1] [ 5.6 1.8] [ 4.1 1. ] [ 6.7 2.2] [ 1.4 0.2]] [1 2 2 2 2 1 2 1 1 2 2 2 2 1 2 1 0 2 1 1 1 1 2 0 0 2 1 0 0 1 0 2 1 0 1 2 1 0 2 2 2 2 0 0 2 2 0 2 0 2 2 0 0 2 0 0 0 1 2 2 0 0 0 1 1 0 0 1 0 2 1 2 1 0 2 0 2 0 0 2 0 2 1 1 1 2 2 1 1 0 1 2 2 0 1 1 1 1 0 0 0 2 1 2 0] [[ 5.1 2.4] [ 4. 1. ] [ 1.4 0.2] [ 6.3 1.8] [ 1.5 0.2] [ 6. 2.5] [ 1.3 0.3] [ 4.7 1.5] [ 4.8 1.4] [ 4. 1.3] [ 5.6 1.4] [ 4.5 1.5] [ 4.7 1.2] [ 4.6 1.5] [ 4.7 1.4] [ 1.5 0.1] [ 4.5 1.5] [ 4.4 1.2] [ 1.4 0.3] [ 1.3 0.4] [ 4.9 2. ] [ 4.5 1.5] [ 1.9 0.2] [ 1.4 0.2] [ 4.8 1.8] [ 1. 0.2] [ 1.9 0.4] [ 4.3 1.3] [ 3.3 1. ] [ 1.6 0.4] [ 5.5 1.8] [ 4.5 1.5] [ 1.5 0.2] [ 4.9 1.8] [ 5.6 2.2] [ 3.9 1.4] [ 1.7 0.3] [ 5.1 1.6] [ 4.2 1.5] [ 4. 1.2] [ 5.5 2.1] [ 1.3 0.2] [ 5.1 2.3] [ 1.6 0.6] [ 1.5 0.2]] [2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0 2 1 0 2 2 1 0 1 1 1 2 0 2 0 0]
from sklearn.model_selection import train_test_split from sklearn import datasets import numpy as pn from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn.svm import SVC from sklearn.tree import DecisionTreeRegressor from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor import matplotlib.pyplot as plt iris = datasets.load_iris() X = iris.data[:,[2,3]] y = iris.target X_train,X_test,y_train,y_test = train_test_split(X,y,test_size =0.3,random_state=0) print(X_train.shape,y_train.shape,X_test.shape,y_test) logreg = LogisticRegression() logreg.fit(X_train,y_train) print(logreg.score(X_test,y_test)) linear = LinearRegression() linear.fit(X_train,y_train) print(linear.score(X_test,y_test)) decisiont = DecisionTreeRegressor() decisiont.fit(X_train,y_train) print(decisiont.score(X_test,y_test)) res =decisiont.predict([[3.2,1]]) print(res) nb = GaussianNB() nb.fit(X_train,y_train) print(nb.score(X_test,y_test)) print(nb.predict([[3.2,1]])) rd = RandomForestClassifier() rd.fit(X_train,y_train) print(rd.score(X_test,y_test)) rr = RandomForestRegressor() rr.fit(X_train,y_train) print(rr.score(X_test,y_test)) svm = SVC() svm.fit(X_train,y_train) print(svm.score(X_test,y_test)) svr = SVR() svr.fit(X_train,y_train) print(svr.score(X_test,y_test)) plt.plot(X_test) plt.show()
(105, 2) (105,) (45, 2) [2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0 2 1 0 2 2 1 0 1 1 1 2 0 2 0 0] 0.688888888889 0.906552111693 0.952731092437 [ 1.] 0.977777777778 [1] 0.955555555556 0.956386554622 0.977777777778 0.948460175898
















