本片博文为大家带来的是算子调优。
Spark性能优化 (2) | 算子调优_sql

 


 

一. mapPartitions

普通的 map 算子对 RDD 中的每一个元素进行操作,而 mapPartitions 算子对 RDD 中每一个分区进行操作。

如果是普通的map算子,假设一个 partition 有 1 万条数据,那么 map 算子中的 function 要执行1万次,也就是对每个元素进行操作。
Spark性能优化 (2) | 算子调优_数据库连接_02
如果是 mapPartition 算子,由于一个 task 处理一个 RDD 的partition,那么一个task只会执行一次function,function一次接收所有的partition数据,效率比较高。
Spark性能优化 (2) | 算子调优_sql_03
比如,当要把 RDD 中的所有数据通过 JDBC 写入数据,如果使用 map 算子,那么需要对 RDD 中的每一个元素都创建一个数据库连接,这样对资源的消耗很大,如果使用mapPartitions算子,那么针对一个分区的数据,只需要建立一个数据库连接。

mapPartitions算子也存在一些缺点:对于普通的map操作,一次处理一条数据,如果在处理了2000条数据后内存不足,那么可以将已经处理完的2000条数据从内存中垃圾回收掉;但是如果使用mapPartitions算子,但数据量非常大时,function一次处理一个分区的数据,如果一旦内存不足,此时无法回收内存,就可能会OOM,即内存溢出。

因此,mapPartitions算子适用于数据量不是特别大的时候,此时使用mapPartitions算子对性能的提升效果还是不错的。(当数据量很大的时候,一旦使用mapPartitions算子,就会直接OOM) 在项目中,应该首先估算一下RDD的数据量、每个partition的数据量,以及分配给每个Executor的内存资源,如果资源允许,可以考虑使用mapPartitions算子代替map。

二. foreachPartition 优化数据库操作

在生产环境中,通常使用foreachPartition算子来完成数据库的写入,通过foreachPartition算子的特性,可以优化写数据库的性能。

如果使用foreach算子完成数据库的操作,由于foreach算子是遍历RDD的每条数据,因此,每条数据都会建立一个数据库连接,这是对资源的极大浪费,因此,对于写数据库操作,我们应当使用foreachPartition算子。 与mapPartitions算子非常相似,foreachPartition是将RDD的每个分区作为遍历对象,一次处理一个分区的数据,也就是说,如果涉及数据库的相关操作,一个分区的数据只需要创建一次数据库连接:
Spark性能优化 (2) | 算子调优_数据_04
使用了foreachPartition算子后,可以获得以下的性能提升:

  1. 对于我们写的function函数,一次处理一整个分区的数据;
  2. 对于一个分区内的数据,创建唯一的数据库连接;
  3. 只需要向数据库发送一次SQL语句和多组参数;

在生产环境中,全部都会使用foreachPartition算子完成数据库操作。foreachPartition算子存在一个问题,与mapPartitions算子类似,如果一个分区的数据量特别大,可能会造成OOM,即内存溢出。

三. filter 与 coalesce 的配合使用

在Spark任务中我们经常会使用filter算子完成RDD中数据的过滤,在任务初始阶段,从各个分区中加载到的数据量是相近的,但是一旦进过filter过滤后,每个分区的数据量有可能会存在较大差异
Spark性能优化 (2) | 算子调优_spark_05
根据上图我们可以发现两个问题:

  1. 每个partition的数据量变小了,如果还按照之前与partition相等的task个数去处理当前数据,有点浪费task的计算资源;
  2. 每个partition的数据量不一样,会导致后面的每个task处理每个partition数据的时候,每个task要处理的数据量不同,这很有可能导致数据倾斜问题。

在上图中, 第二个分区的数据过滤后只剩100条,而第三个分区的数据过滤后剩下800条,在相同的处理逻辑下,第二个分区对应的task处理的数据量与第三个分区对应的task处理的数据量差距达到了8倍,这也会导致运行速度可能存在数倍的差距,这也就是数据倾斜问题。

针对上述的两个问题,我们分别进行分析:

  1. 针对第一个问题,既然分区的数据量变小了,我们希望可以对分区数据进行重新分配,比如将原来4个分区的数据转化到2个分区中,这样只需要用后面的两个task进行处理即可,避免了资源的浪费。
  2. 针对第二个问题,解决方法和第一个问题的解决方法非常相似,对分区数据重新分配,让每个partition中的数据量差不多,这就避免了数据倾斜问题。

那么具体应该如何实现上面的解决思路?我们需要coalesce算子。

repartition与coalesce都可以用来进行重分区,其中repartition只是coalesce接口中shuffle为true的简易实现,coalesce默认情况下不进行shuffle,但是可以通过参数进行设置。

假设我们希望将原本的分区个数A通过重新分区变为B,那么有以下几种情况: 1. A > B(多数分区合并为少数分区)

  • A与B相差值不大
    此时使用coalesce即可,无需shuffle过程。

  • A与B相差值很大
    此时可以使用 coalesce 并且不启用 shuffle 过程,但是会导致合并过程性能低下,所以推荐设置 coalesce 的第二个参数为 true,即启动 shuffle 过程。

  1. A < B(少数分区分解为多数分区)

此时使用repartition即可,如果使用coalesce需要将shuffle设置为true,否则coalesce无效。

总结: 我们可以在filter操作之后,使用coalesce算子针对每个partition的数据量各不相同的情况,压缩partition的数量,而且让每个partition的数据量尽量均匀紧凑,以便于后面的task进行计算操作,在某种程度上能够在一定程度上提升性能。

注意:local模式是进程内模拟集群运行,已经对并行度和分区数量有了一定的内部优化,因此不用去设置并行度和分区数量。

四. repartition解决 SparkSQL 低并行度问题

在第一节的常规性能调优中我们讲解了并行度的调节策略,但是,并行度的设置对于Spark SQL是不生效的,用户设置的并行度只对于Spark SQL以外的所有Spark的stage生效。

Spark SQL的并行度不允许用户自己指定,Spark SQL自己会默认根据 hive 表对应的 HDFS 文件的 split 个数自动设置 Spark SQL 所在的那个 stage 的并行度,用户自己通spark.default.parallelism参数指定的并行度,只会在没Spark SQL的stage中生效。

由于Spark SQL所在stage的并行度无法手动设置,如果数据量较大,并且此stage中后续的transformation操作有着复杂的业务逻辑,而Spark SQL自动设置的task数量很少,这就意味着每个task要处理为数不少的数据量,然后还要执行非常复杂的处理逻辑,这就可能表现为第一个有 Spark SQL 的 stage 速度很慢,而后续的没有 Spark SQL 的 stage 运行速度非常快。

为了解决Spark SQL无法设置并行度和 task 数量的问题,我们可以使用repartition算子。
Spark性能优化 (2) | 算子调优_数据_06
Spark SQL这一步的并行度和task数量肯定是没有办法去改变了,但是,对于Spark SQL查询出来的RDD,立即使用repartition算子,去重新进行分区,这样可以重新分区为多个partition,从repartition之后的RDD操作,由于不再涉及 Spark SQL,因此 stage 的并行度就会等于你手动设置的值,这样就避免了 Spark SQL 所在的 stage 只能用少量的 task 去处理大量数据并执行复杂的算法逻辑。

五. reduceByKey 预聚合

reduceByKey相较于普通的shuffle操作一个显著的特点就是会进行map端的本地聚合,map端会先对本地的数据进行combine操作,然后将数据写入给下个stage的每个task创建的文件中,也就是在map端,对每一个key对应的value,执行reduceByKey算子函数。
Spark性能优化 (2) | 算子调优_sql_07
使用reduceByKey对性能的提升如下: 1. 本地聚合后,在map端的数据量变少,减少了磁盘IO,也减少了对磁盘空间的占用; 2. 本地聚合后,下一个stage拉取的数据量变少,减少了网络传输的数据量; 3. 本地聚合后,在reduce端进行数据缓存的内存占用减少; 4. 本地聚合后,在reduce端进行聚合的数据量减少。

基于reduceByKey的本地聚合特征,我们应该考虑使用reduceByKey代替其他的shuffle算子,例如groupByKey。

reduceByKey与groupByKey的运行原理如图:
Spark性能优化 (2) | 算子调优_数据_08
Spark性能优化 (2) | 算子调优_数据库连接_09
根据上图可知,groupByKey不会进行map端的聚合,而是将所有map端的数据shuffle到reduce端,然后在reduce端进行数据的聚合操作。由于reduceByKey有map端聚合的特性,使得网络传输的数据量减小,因此效率要明显高于groupByKey。

  本次的分享就到这里了,


Spark性能优化 (2) | 算子调优_数据_10

  好书不厌读百回,熟读课思子自知。而我想要成为全场最靓的仔,就必须坚持通过学习来获取更多知识,用知识改变命运,用博客见证成长,用行动证明我在努力。