Mapper 阶段

package com.zyd.wc;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
* 输入的kye LongWritable 行号
* 输入的value 序列化的String类型 Text 一行的内容
* 输出的key Text 单词
* 输出的value 数字 IntWritable类型 单词个数
*/
public class WordCountMapper extends Mapper<LongWritable,Text,Text,IntWritable>{
//避免循环时不断创建对象
Text k = new Text();
IntWritable v = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 1. 将一行内容转换成String,因为传进来的是Text类型
String line = value.toString();
// 2. 按照空格进行切割成一个个的单词
String[] words = line.split(" ");
//3. 循环写出到下一阶段 形式是 <word,1>
for (String word : words){
//输出时类型不匹配 但是避免每一次创建一个对象对于内存的损耗在方法外进行创建
k.set(word);
context.write(k,v);
}
}
}

Reducer阶段

package com.zyd.wc;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
* Reducer的输入数map的输出,所以序列化的类型要匹配
*/
public class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
@Override
/**
* 相同的key进行计算
* 相同的key<word,1> 有多个,需要迭代器
* context:输出
*/
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//统计单词总个数
int sum =0;

for (IntWritable count:values){
sum +=count.get();
}


//输出单词总个数
context.write(key,new IntWritable(sum));
}
}

驱动类

package com.zyd.wc;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCountRunner {
public static void main (String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1. 获取配置信息 或者job对象实例
Configuration conf= new Configuration();
Job job = Job.getInstance(conf);
//6. 指定本程序的jar包所在本地路径
//job.setJar("/home/wc.jar"); 由于地址变化,不合适
//底层框架实现,自动找jar的位置
job.setJarByClass(WordCountRunner.class);

//2. 指定本业务job所使用的mapper和reducer业务类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);

//3. 指定mapper输出数据k,v类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

//4.指定最终输出数据的k,v类型
job.setOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

//5. 指定job的输入原始文件所在目录
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));

//7. 将job中配置的相关参数,以及job中所用的java类所在的jar包,
//提交给yarn去运行
boolean result = job.waitForCompletion(true);
System.out.println(result?0:1);
}
}