这里Elasticsearch是单节点,版本为5.2.2。
【1】获取PreBuiltTransportClient
实例代码
@Test
public void getClient() throws Exception {
Settings settings= Settings.builder().put("cluster.name","my-application").build();
PreBuiltTransportClient client = new PreBuiltTransportClient(settings);
byte[] addr = {(byte) 192, (byte) 168,18, (byte) 128};
client.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByAddress(addr),9300));
System.out.println(client);
}
控制台打印
io.netty.channel.DefaultChannelId - -Dio.netty.machineId: 28:d2:44:ff:fe:f0:2f:30 (auto-detected)
io.netty.util.internal.InternalThreadLocalMap - -Dio.netty.threadLocalMap.stringBuilder.initialSize: 1024
io.netty.util.internal.InternalThreadLocalMap - -Dio.netty.threadLocalMap.stringBuilder.maxSize: 4096
io.netty.util.ResourceLeakDetector - -Dio.netty.leakDetection.level: simple
io.netty.util.ResourceLeakDetector - -Dio.netty.leakDetection.targetRecords: 4
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.numHeapArenas: 8
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.numDirectArenas: 8
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.pageSize: 8192
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.maxOrder: 11
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.chunkSize: 16777216
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.tinyCacheSize: 512
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.smallCacheSize: 256
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.normalCacheSize: 64
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.maxCachedBufferCapacity: 32768
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.cacheTrimInterval: 8192
io.netty.buffer.PooledByteBufAllocator - -Dio.netty.allocator.useCacheForAllThreads: true
io.netty.buffer.ByteBufUtil - -Dio.netty.allocator.type: pooled
io.netty.buffer.ByteBufUtil - -Dio.netty.threadLocalDirectBufferSize: 0
io.netty.buffer.ByteBufUtil - -Dio.netty.maxThreadLocalCharBufferSize: 16384
io.netty.buffer.AbstractByteBuf - -Dio.netty.buffer.bytebuf.checkAccessible: true
io.netty.util.ResourceLeakDetectorFactory - Loaded default ResourceLeakDetector: io.netty.util.ResourceLeakDetector@5f5b5ca4
io.netty.util.Recycler - -Dio.netty.recycler.maxCapacityPerThread: 4096
io.netty.util.Recycler - -Dio.netty.recycler.maxSharedCapacityFactor: 2
io.netty.util.Recycler - -Dio.netty.recycler.linkCapacity: 16
io.netty.util.Recycler - -Dio.netty.recycler.ratio: 8
org.elasticsearch.transport.netty4.Netty4Transport - connected to node [{#transport#-1}{DX4Qcrb4QAaGAgDUb-XYxg}{192.168.18.128}{192.168.18.128:9300}]
org.elasticsearch.transport.netty4.Netty4Transport - connected to node [{node-1}{rBJNxRw2RxisNp-uBs8o4g}{10h3v06bR4SI4x4ee0F1HQ}{192.168.18.128}{192.168.18.128:9300}]
org.elasticsearch.transport.client.PreBuiltTransportClient@7af1cd63
【2】创建索引
实例代码:
@Test
public void createIndex(){
CreateIndexResponse blog = client.admin().indices().prepareCreate("my-blog").get();
System.out.println(blog);
client.close();
}
控制台打印
查看当前ES中索引
http://192.168.18.128:9200/_cat/indices
查看my-blog详细
http://192.168.18.128:9200/my-blog?pretty
如果不加pretty参数则如下所示:
Elasticsearch索引结束时将得到5个分片及其各自1个副本。简单来说,操作结束时,将有10个Lucene索引分布在集群中。
【3】删除索引
实例代码
@Test
public void deleteIndex(){
// 1 删除索引
DeleteIndexResponse deleteIndexResponse = client.admin().indices().prepareDelete("my-blog").get();
System.out.println(deleteIndexResponse);
// 2 关闭连接
client.close();
}
控制台打印
查询索引确认索引已经删除
【4】创建文档
① 以json串方式新建文档
当直接在ElasticSearch建立文档对象时,如果索引不存在的,默认会自动创建,映射采用默认方式。
实例代码:
@Test
public void createIndexByJson() {
// 1 文档数据准备
String json = "{" + "\"id\":\"1\"," + "\"title\":\"基于Lucene的搜索服务器\","
+ "\"content\":\"它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口\"" + "}";
// 2 创建文档
IndexResponse indexResponse = client.prepareIndex("my-blog", "article", "1").setSource(json).execute().actionGet();
// 3 打印返回的结果
System.out.println("index:" + indexResponse.getIndex());
System.out.println("type:" + indexResponse.getType());
System.out.println("id:" + indexResponse.getId());
System.out.println("version:" + indexResponse.getVersion());
System.out.println("result:" + indexResponse.getResult());
// 4 关闭连接
client.close();
}
控制台打印:
浏览器查看http://192.168.18.128:9200/my-blog?pretty
:
② 源数据map方式添加json创建文档
实例代码:
@Test
public void createIndexByMap() {
// 1 文档数据准备
Map<String, Object> json = new HashMap<String, Object>();
json.put("id", "2");
json.put("title", "基于Lucene的搜索服务器");
json.put("content", "它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口");
// 2 创建文档
IndexResponse indexResponse = client.prepareIndex("my-blog", "article", "2").setSource(json).execute().actionGet();
// 3 打印返回的结果
System.out.println("index:" + indexResponse.getIndex());
System.out.println("type:" + indexResponse.getType());
System.out.println("id:" + indexResponse.getId());
System.out.println("version:" + indexResponse.getVersion());
System.out.println("result:" + indexResponse.getResult());
// 4 关闭连接
client.close();
}
控制台打印:
浏览器确认该索引文档http://192.168.18.128:9200/my-blog/_search?pretty
浏览器查询ES所有信息http://192.168.18.128:9200/_all/_search?pretty
③ 源数据es构建器添加json创建文档
实例代码:
@Test
public void createIndex() throws Exception {
// 1 通过es自带的帮助类,构建json数据
XContentBuilder builder = XContentFactory.jsonBuilder().startObject().field("id", 3)
.field("title", "基于Lucene的搜索服务器").field("content", "它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。")
.endObject();
// 2 创建文档
IndexResponse indexResponse = client.prepareIndex("my-blog", "article", "3").setSource(builder).get();
// 3 打印返回的结果
System.out.println("index:" + indexResponse.getIndex());
System.out.println("type:" + indexResponse.getType());
System.out.println("id:" + indexResponse.getId());
System.out.println("version:" + indexResponse.getVersion());
System.out.println("result:" + indexResponse.getResult());
// 4 关闭连接
client.close();
}
控制台打印:
浏览器查询确认http://192.168.18.128:9200/my-blog/_search?pretty
【5】查询索引中文档数据
① 根据索引ID查询单条数据
实例代码:
@Test
public void getData() throws Exception {
// 1 查询文档
GetResponse response = client.prepareGet("my-blog", "article", "1").get();
// 2 打印搜索的结果
System.out.println(response.getSourceAsString());
// 3 关闭连接
client.close();
}
控制台打印:
② 根据索引ID查询多条数据
实例代码:
@Test
public void getMultiData() {
// 1 查询多个文档
MultiGetResponse response = client.prepareMultiGet().add("my-blog", "article", "1").add("my-blog", "article", "2", "3")
.add("my-blog", "article", "2").get();
// 2 遍历返回的结果
for(MultiGetItemResponse itemResponse:response){
GetResponse getResponse = itemResponse.getResponse();
// 如果获取到查询结果
if (getResponse.isExists()) {
String sourceAsString = getResponse.getSourceAsString();
System.out.println(sourceAsString);
}
}
// 3 关闭资源
client.close();
}
控制台打印:
【6】更新索引文档数据
① update-更新文档数据
实例代码:
@Test
public void updateData() throws Throwable {
// 1 创建更新数据的请求对象
UpdateRequest updateRequest = new UpdateRequest();
updateRequest.index("my-blog");
updateRequest.type("article");
updateRequest.id("3");
updateRequest.doc(XContentFactory.jsonBuilder().startObject()
// 对没有的字段添加, 对已有的字段替换
.field("title", "基于Lucene的搜索服务器")
.field("content",
"它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。大数据前景无限")
.field("createDate", "2019-12-22").endObject());
// 2 获取更新后的值
UpdateResponse indexResponse = client.update(updateRequest).get();
// 3 打印返回的结果
System.out.println("index:" + indexResponse.getIndex());
System.out.println("type:" + indexResponse.getType());
System.out.println("id:" + indexResponse.getId());
System.out.println("version:" + indexResponse.getVersion());
System.out.println("create:" + indexResponse.getResult());
// 4 关闭连接
client.close();
}
控制台打印:
浏览器查询确认http://192.168.18.128:9200/my-blog/_search?pretty
② upsert-更新文档数据
设置查询条件, 查找不到则添加IndexRequest内容,查找到则按照UpdateRequest更新。
实例代码:
@Test
public void testUpsert() throws Exception {
// 设置查询条件, 查找不到则添加
IndexRequest indexRequest = new IndexRequest("my-blog", "article", "5")
.source(XContentFactory.jsonBuilder().startObject().field("title", "搜索服务器").field("content","它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。").endObject());
// 设置更新, 查找到更新下面的设置
UpdateRequest upsert = new UpdateRequest("my-blog", "article", "5")
.doc(XContentFactory.jsonBuilder().startObject().field("user", "李四").endObject()).upsert(indexRequest);
client.update(upsert).get();
client.close();
}
浏览器查询确认http://192.168.18.128:9200/my-blog/_search?pretty
【7】删除文档数据
实例代码:
@Test
public void deleteData() {
// 1 删除文档数据
DeleteResponse indexResponse = client.prepareDelete("blog", "article", "5").get();
// 2 打印返回的结果
System.out.println("index:" + indexResponse.getIndex());
System.out.println("type:" + indexResponse.getType());
System.out.println("id:" + indexResponse.getId());
System.out.println("version:" + indexResponse.getVersion());
System.out.println("found:" + indexResponse.getResult());
// 3 关闭连接
client.close();
}
控制台打印:
浏览器查询确认http://192.168.18.128:9200/my-blog/_search?pretty
【8】条件查询
① 查询索引所有文档数据(matchAllQuery)
实例代码:
@Test
public void matchAllQuery() {
// 1 执行查询
SearchResponse searchResponse = client.prepareSearch("my-blog").setTypes("article")
.setQuery(QueryBuilders.matchAllQuery()).get();
// 2 打印查询结果
SearchHits hits = searchResponse.getHits(); // 获取命中次数,查询结果有多少对象
System.out.println("查询结果有:" + hits.getTotalHits() + "条");
Iterator<SearchHit> iterator = hits.iterator();
while (iterator.hasNext()) {
SearchHit searchHit = iterator.next(); // 每个查询对象
System.out.println(searchHit.getSourceAsString()); // 获取字符串格式打印
}
// 3 关闭连接
client.close();
}
控制台打印:
② 对所有字段分词查询(queryStringQuery)
实例代码:
@Test
public void query() {
// 1 条件查询
SearchResponse searchResponse = client.prepareSearch("my-blog").setTypes("article")
.setQuery(QueryBuilders.queryStringQuery("全文")).get();
// 2 打印查询结果
SearchHits hits = searchResponse.getHits(); // 获取命中次数,查询结果有多少对象
System.out.println("查询结果有:" + hits.getTotalHits() + "条");
Iterator<SearchHit> iterator = hits.iterator();
while (iterator.hasNext()) {
SearchHit searchHit = iterator.next(); // 每个查询对象
System.out.println(searchHit.getSourceAsString()); // 获取字符串格式打印
}
// 3 关闭连接
client.close();
}
控制台打印:
③ 通配符查询(wildcardQuery)
*:表示多个字符(任意的字符)
?:表示单个字符
实例代码:
@Test
public void wildcardQuery() {
// 1 通配符查询
SearchResponse searchResponse = client.prepareSearch("my-blog").setTypes("article")
.setQuery(QueryBuilders.wildcardQuery("content", "*全*")).get();
// 2 打印查询结果
SearchHits hits = searchResponse.getHits(); // 获取命中次数,查询结果有多少对象
System.out.println("查询结果有:" + hits.getTotalHits() + "条");
Iterator<SearchHit> iterator = hits.iterator();
while (iterator.hasNext()) {
SearchHit searchHit = iterator.next(); // 每个查询对象
System.out.println(searchHit.getSourceAsString()); // 获取字符串格式打印
}
// 3 关闭连接
client.close();
}
控制台打印:
④ 词条查询(TermQuery)
实例代码;
@Test
public void termQuery() {
// 1 第一field查询
// SearchResponse searchResponse = client.prepareSearch("my-blog").setTypes("article")
// .setQuery(QueryBuilders.termQuery("content", "全文")).get();//0条
SearchResponse searchResponse = client.prepareSearch("my-blog").setTypes("article")
.setQuery(QueryBuilders.termQuery("content", "全")).get();//3条
// 2 打印查询结果
SearchHits hits = searchResponse.getHits(); // 获取命中次数,查询结果有多少对象
System.out.println("查询结果有:" + hits.getTotalHits() + "条");
Iterator<SearchHit> iterator = hits.iterator();
while (iterator.hasNext()) {
SearchHit searchHit = iterator.next(); // 每个查询对象
System.out.println(searchHit.getSourceAsString()); // 获取字符串格式打印
}
// 3 关闭连接
client.close();
}
这里需要说明,默认词条查询是将每个字作为索引进行查找,使用词(比如全文)进行查找是找不到的。单一使用有点鸡肋,需要借助分词器组合使用。
⑤ 模糊查询(fuzzy)
实例代码:
@Test
public void fuzzy() {
// 1 模糊查询
SearchResponse searchResponse = client.prepareSearch("my-blog").setTypes("article")
.setQuery(QueryBuilders.fuzzyQuery("content", "大")).get();
// 2 打印查询结果
SearchHits hits = searchResponse.getHits(); // 获取命中次数,查询结果有多少对象
System.out.println("查询结果有:" + hits.getTotalHits() + "条");
Iterator<SearchHit> iterator = hits.iterator();
while (iterator.hasNext()) {
SearchHit searchHit = iterator.next(); // 每个查询对象
System.out.println(searchHit.getSourceAsString()); // 获取字符串格式打印
}
// 3 关闭连接
client.close();
}
控制台打印:
【9】映射mappings
上面创建的索引默认映射信息http://192.168.18.128:9200/my-blog?pretty
:
添加mapping的索引必须存在且该索引不能存在mapping,否则添加不成功。
实例代码:
@Test
public void createMapping() throws Exception {
//1.添加mapping的索引必须存在;2.该索引不能存在mapping,否则添加不成功
CreateIndexResponse blog = client.admin().indices().prepareCreate("my-blog2").get();
System.out.println(blog);
// 2设置mapping
XContentBuilder builder = XContentFactory.jsonBuilder()
.startObject()
.startObject("article")
.startObject("properties")
.startObject("id1")
.field("type", "string")
.field("store", "yes")
.endObject()
.startObject("title2")
.field("type", "string")
.field("store", "no")
.endObject()
.startObject("content")
.field("type", "string")
.field("store", "yes")
.endObject()
.endObject()
.endObject()
.endObject();
// 3 添加mapping
PutMappingRequest mapping = Requests.putMappingRequest("my-blog2").type("article").source(builder);
client.admin().indices().putMapping(mapping).get();
// 4 关闭资源
client.close();
}
浏览器查询确认http://192.168.18.128:9200/_cat/indices
:
查询索引明细http://192.168.18.128:9200/my-blog2?pretty
:
总结,用java原生操作es十分麻烦,建议使用SpringData Elasticsearch官网。