五、代码结构(3) I/O写流程

上一篇我们来介绍了dm dedup的空间管理 这一篇我们介绍核心流程I/O写流程

要看的特别清楚这部分的内容,需要结合我之前写过的《device-mapper 块级重删(dm dedup) <2>设计》请添加链接描述一起学习。

在块级重删 设计那一篇已经描述了这一系列的过程。 上一篇代码结构已经对kvs_hash和kvs_lbn的lookup和insert有了分析。 接下来我们来看看lookup和insert在写流程中的使用。

首先我们先看一下alloc_pbn_block给lbn的函数,后面都会用用到。

	
			【
							/*因为现在还没有pbn来放置lbn,所以先申请一个pbn_new*/
					static int alloc_pbnblk_and_insert_lbn_pbn(struct dedup_config *dc,
													 u64 *pbn_new,
													 struct bio *bio, uint64_t lbn)
						{
							int r = 0;
							struct lbn_pbn_value lbnpbn_value;

							r = allocate_block(dc, pbn_new);/*找到一个新的pbn*/

							lbnpbn_value.pbn = *pbn_new;
							do_io(dc, bio, *pbn_new); /*将bio的数据放置到pbn_new的位置*/

							r = dc->kvs_lbn_pbn->kvs_insert(dc->kvs_lbn_pbn, (void *)&lbn,
											sizeof(lbn), (void *)&lbnpbn_value,
											sizeof(lbnpbn_value));
							/*将新的lbn_pbn的关系记录到kvs_lbn_pbn中*/
							return r;
					}
			 】

1、no hash && no lbn 即:① compute_hash_bio(dc->desc_table, bio, hash); //对bio的data进行hash,获得到hash_pbn -> ② dc->kvs_hash_pbn->kvs_lookup; //通过hash值,查找对应的hash_pbn_value,也就是pbn。 没有找到pbn ->③ handle_write_no_hash.[dc->kvs_lbn_pbn->kvs_lookup] //寻找bio的lbn是否存在 没有找到lbn -> ④ handle_write_no_hash.[__handle_no_lbn_pbn] //这里到了最终处理函数 这里为了减少篇章,去掉了资源申请错误处理和资源访问错误处理

static int __handle_no_lbn_pbn(struct dedup_config *dc,
			       struct bio *bio, uint64_t lbn, u8 *hash)
{
	int r, ret;
	u64 pbn_new;
	struct hash_pbn_value hashpbn_value;

	/* Create a new lbn-pbn mapping for given lbn,注意这里是pbn_new */
	r = alloc_pbnblk_and_insert_lbn_pbn(dc, &pbn_new, bio, lbn);

	/* Inserts new hash-pbn mapping for given hash.
	由于dm_io已经将bio数据放置到pbn中,然后hash_pbn记录*/
	
	hashpbn_value.pbn = pbn_new;
	r = dc->kvs_hash_pbn->kvs_insert(dc->kvs_hash_pbn, (void *)hash,
					 dc->crypto_key_size,
					 (void *)&hashpbn_value,
					 sizeof(hashpbn_value));

	/* Increments refcount for new pbn entry created. 增加一个引用*/
	r = dc->mdops->inc_refcount(dc->bmd, pbn_new);

	/* On all successful steps increment new write count. */
	dc->newwrites++;/* 在dc中记录下newwrites增加,为了更好的统计和分析行为*/
	goto out;

/* Error handling code path */
inc_refcount_err:
	/* Undo actions taken in hash-pbn kvs insert. */
	ret = dc->kvs_hash_pbn->kvs_delete(dc->kvs_hash_pbn,
					   (void *)hash, dc->crypto_key_size);

kvs_insert_err:
	/* Undo actions taken in alloc_pbnblk_and_insert_lbn_pbn. */
	ret = dc->kvs_lbn_pbn->kvs_delete(dc->kvs_lbn_pbn,
					  (void *)&lbn, sizeof(lbn));

	ret = dc->mdops->dec_refcount(dc->bmd, pbn_new);

out:
	return r;
}

2、no hash && has lbn 即:① compute_hash_bio(dc->desc_table, bio, hash); //对bio的data进行hash,获得到hash_pbn -> ② dc->kvs_hash_pbn->kvs_lookup; //通过hash值,查找对应的hash_pbn_value,也就是pbn。 没有找到pbn ->③ handle_write_no_hash.[dc->kvs_lbn_pbn->kvs_lookup] //寻找bio的lbn是否存在 找到lbn -> ④ handle_write_no_hash.[__handle_has_lbn_pbn] //这里到了最终处理函数

static int __handle_has_lbn_pbn(struct dedup_config *dc,
				struct bio *bio, uint64_t lbn, u8 *hash,
				u64 pbn_old)
{
	int r, ret;
	u64 pbn_new;
	struct hash_pbn_value hashpbn_value;

	/* Allocates a new block for new pbn and inserts lbn-pbn lapping.注意这是覆盖 */
	r = alloc_pbnblk_and_insert_lbn_pbn(dc, &pbn_new, bio, lbn);

	/* Inserts new hash-pbn entry for given hash. */
	hashpbn_value.pbn = pbn_new;
	r = dc->kvs_hash_pbn->kvs_insert(dc->kvs_hash_pbn, (void *)hash,
					 dc->crypto_key_size,
					 (void *)&hashpbn_value,
					 sizeof(hashpbn_value));

	/* Increments refcount of new pbn. */
	r = dc->mdops->inc_refcount(dc->bmd, pbn_new);
	/*注意这里需要将pbn_new+,pbn_old-,这样有可能pbn_old减到可回收的可能*/
	/* Decrements refcount for old pbn and decrement logical block cnt. */
	r = dc->mdops->dec_refcount(dc->bmd, pbn_old);

	dc->logical_block_counter--;

	/* On all successful steps increment overwrite count. */
	dc->overwrites++;  /*这里是overwrites++,和上面的newwrites不一样*/
	goto out;

/* Error handling code path. */
dec_refcount_err:
	/* Undo actions taken while incrementing refcount of new pbn. */
	ret = dc->mdops->dec_refcount(dc->bmd, pbn_new);

inc_refcount_err:
	ret = dc->kvs_hash_pbn->kvs_delete(dc->kvs_hash_pbn, (void *)hash,
					   dc->crypto_key_size);

kvs_insert_err:
	/* Undo actions taken in alloc_pbnblk_and_insert_lbn_pbn. */
	ret = dc->kvs_lbn_pbn->kvs_delete(dc->kvs_lbn_pbn, (void *)&lbn,
					  sizeof(lbn));
						
	ret = dc->mdops->dec_refcount(dc->bmd, pbn_new);

out:
	return r;
}

3、hash && no lbn 即:① compute_hash_bio(dc->desc_table, bio, hash); //对bio的data进行hash,获得到hash_pbn -> ② dc->kvs_hash_pbn->kvs_lookup; //通过hash值,查找对应的hash_pbn_value,也就是pbn。 找到pbn ->③ handle_write_with_hash.[dc->kvs_lbn_pbn->kvs_lookup] //寻找bio的lbn是否存在 没有找到lbn -> ④ handle_write_no_hash.[__handle_no_lbn_pbn_with_hash] //这里到了最终处理函数 既然找到了hash_pbn,就是pbn可以复用的,直接将lbn将pbn关联就行

static int __handle_no_lbn_pbn_with_hash(struct dedup_config *dc,
					 struct bio *bio, uint64_t lbn,
					 u64 pbn_this,
					 struct lbn_pbn_value lbnpbn_value)
{
	int r = 0, ret;

	/* Increments refcount of this passed pbn */
	r = dc->mdops->inc_refcount(dc->bmd, pbn_this);
	if (r < 0)
		goto out;

	lbnpbn_value.pbn = pbn_this;

	/* Insert lbn->pbn_this entry */
	r = dc->kvs_lbn_pbn->kvs_insert(dc->kvs_lbn_pbn, (void *)&lbn,
					sizeof(lbn), (void *)&lbnpbn_value,
					sizeof(lbnpbn_value));
	if (r < 0)
		goto kvs_insert_error;

	dc->logical_block_counter++;

	bio->bi_status = BLK_STS_OK;
	bio_endio(bio);
	/*bio完成*/
	dc->newwrites++;
	goto out;

kvs_insert_error:
	/* Undo actions taken while incrementing refcount of this pbn. */
	ret = dc->mdops->dec_refcount(dc->bmd, pbn_this);

out:
	return r;
}

4、hash && lbn 即:① compute_hash_bio(dc->desc_table, bio, hash); //对bio的data进行hash,获得到hash_pbn -> ② dc->kvs_hash_pbn->kvs_lookup; //通过hash值,查找对应的hash_pbn_value,也就是pbn。 找到pbn ->③ handle_write_with_hash.[dc->kvs_lbn_pbn->kvs_lookup] //寻找bio的lbn是否存在 找到lbn -> ④ handle_write_no_hash.[__handle_has_lbn_pbn_with_hash] //这里到了最终处理函数 既然找到了hash_pbn和lbn_pbn,这里存在了两种情况: 一、overwrite,也就是hash_pbn的pbn和lbn_pbn是一个。 二、No relationship,也就是这是将一个pbn的内容写到一个新的lbn位置

static int __handle_has_lbn_pbn_with_hash(struct dedup_config *dc,
					  struct bio *bio, uint64_t lbn,
					  u64 pbn_this,
					  struct lbn_pbn_value lbnpbn_value)
{
	int r = 0, ret;
	struct lbn_pbn_value this_lbnpbn_value;
	u64 pbn_old;

	pbn_old = lbnpbn_value.pbn;

	/* special case, overwrite same LBN/PBN with same data */
	if (pbn_this == pbn_old)
		goto out;
		
  /*如果hash_pbn和lbn_pbn不相等,1、增加pbn引用和新lbn和pbn关联*/
	/* Increments refcount of this passed pbn */
	r = dc->mdops->inc_refcount(dc->bmd, pbn_this);
	if (r < 0)
		goto out;

	this_lbnpbn_value.pbn = pbn_this;

	/* Insert lbn->pbn_this entry */
	r = dc->kvs_lbn_pbn->kvs_insert(dc->kvs_lbn_pbn, (void *)&lbn,
					sizeof(lbn),
					(void *)&this_lbnpbn_value,
					sizeof(this_lbnpbn_value));
	if (r < 0)
		goto kvs_insert_err;

  /*减小lbn之前记住的pbn_old的引用,这个pbn_old将可能被回收*/
	/* Decrement refcount of old pbn */
	r = dc->mdops->dec_refcount(dc->bmd, pbn_old);
	if (r < 0)
		goto dec_refcount_err;

	goto out;	/* all OK */

dec_refcount_err:
	/* Undo actions taken while decrementing refcount of old pbn */
	/* Overwrite lbn->pbn_this entry with lbn->pbn_old entry */
	ret = dc->kvs_lbn_pbn->kvs_insert(dc->kvs_lbn_pbn, (void *)&lbn,
				    	  sizeof(lbn), (void *)&lbnpbn_value,
					  sizeof(lbnpbn_value));
	if (ret < 0)
		DMERR("Error in overwriting lbn->pbn_this [%llu] with"
		      " lbn-pbn_old entry [%llu].", this_lbnpbn_value.pbn,
		      lbnpbn_value.pbn);

kvs_insert_err:
	ret = dc->mdops->dec_refcount(dc->bmd, pbn_this);
	if (ret < 0)
		DMERR("Error in decrementing previously incremented refcount.");
out:
	if (r == 0) {
		bio->bi_status = BLK_STS_OK;
		bio_endio(bio);
		dc->overwrites++;
	}

	return r;
}

这一篇介绍了,写流程的四种情况,更加清晰了解释了dm dedup设计一文中的流程图。 希望读者看完后,能够对dm dedup这种简单逻辑的方式所吸引,从而喜欢上块重删这个技术。

--------------未完待续--------------

【本文只在51cto博客作者 “底层存储技术” http://blog.51cto.com/12580077 个人发布,公众号发布:存储之谷】,如需转载,请于本人联系,谢谢。