NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)





目录

​输出结果​

​设计思路​

​相关资料​

​1、关于代码​

​2、关于数据集​

​关于留言​

​1、留言内容的注意事项​

​2、如何留言?​

​2.1、第一种方法——在对应的博客下留言​

​2.2、备用第二种方法——论坛发帖​

​后续补充发放资料的说明​

​主要部分代码实现​




输出结果

1、测试对象

data1= '今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!'

data2= '今天上海天气真差,非常讨厌下雨,把我冻坏了,心情太不高兴了,不高兴,我真的很生气!'

data3= '美国华裔科学家,祖籍江苏扬州市高邮县,生于上海,斯坦福大学物理系,电子工程系和应用物理系终身教授!'

2、输出结果

很明显,data1情感更加积极!data2情感消极!data3情感中等!

[[240.0, 104.0, 8.3, 3.6, 8.0, 2.4]]

[[0.0, 134.0, 0.0, 4.8, 0.0, 3.2]]

[[2, 66, 0.1, 3.3, 0.4, 1.7]]

[[2, 2, 0.1, 0.1, 0.4, 0.4]]


设计思路

后期更新……



相关资料

1、关于代码

​NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)之全部代码​


2、关于数据集

如需数据集,请留言向博主索取。

:当前为学生身份的网友,可留言向博主索取。非学生身份的社会人士,请靠积分下载!

NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)_情感分析

NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)_数据集_02



关于留言

1、留言内容的注意事项

  • 1、请新增评论,不要直接回复,折叠后,我容易看不到,会漏掉。
  • 2、请在前缀加一个索取资料的当天日期。
  • 3、切记要留下邮箱!!!

比如留言:“20200307,早上10.11,你好,博主,我的邮箱是,我想索取……”



2、如何留言?

2.1、第一种方法——在对应的博客下留言

即在本博客下直接留言即可!


2.2、备用第二种方法——论坛发帖

在我的论坛中发帖即可,我会及时回复。



后续补充发放资料的说明

此类网友,太伤人心,这位网友,一定不是大学生,当代大学生的素质肯定比这位网友高的多。

NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)_数据集_03


主要部分代码实现

import jieba
import numpy as np

……


def sentiment_score_list(dataset):
seg_sentence = dataset.split('。')

count1 = []
count2 = []
for sen in seg_sentence: #循环遍历每一个评论
segtmp = jieba.lcut(sen, cut_all=False) #把句子进行分词,以列表的形式返回
i = 0 #记录扫描到的词的位置
a = 0 #记录情感词的位置
poscount = 0 #积极词的第一次分值
poscount2 = 0 #积极词反转后的分值
poscount3 = 0 #积极词的最后分值(包括叹号的分值)
negcount = 0
negcount2 = 0
negcount3 = 0
for word in segtmp:
if word in posdict: # 判断词语是否是情感词
poscount += 1
c = 0
for w in segtmp[a:i]: # 扫描情感词前的程度词
if w in mostdict:
poscount *= 4.0
elif w in verydict:
poscount *= 3.0
elif w in moredict:
poscount *= 2.0
elif w in ishdict:
poscount *= 0.5
elif w in deny_word:
c += 1
if judgeodd(c) == 'odd': # 扫描情感词前的否定词数
poscount *= -1.0
poscount2 += poscount
poscount = 0
poscount3 = poscount + poscount2 + poscount3
poscount2 = 0
else:
poscount3 = poscount + poscount2 + poscount3
poscount = 0
a = i + 1 # 情感词的位置变化

elif word in negdict: # 消极情感的分析,与上面一致
negcount += 1
d = 0
for w in segtmp[a:i]:
if w in mostdict:
negcount *= 4.0
elif w in verydict:
negcount *= 3.0
elif w in moredict:
negcount *= 2.0
elif w in ishdict:
negcount *= 0.5
elif w in degree_word:
d += 1
if judgeodd(d) == 'odd':
negcount *= -1.0
negcount2 += negcount
negcount = 0
negcount3 = negcount + negcount2 + negcount3
negcount2 = 0
else:
negcount3 = negcount + negcount2 + negcount3
negcount = 0
a = i + 1
elif word == '!' or word == '!': ##判断句子是否有感叹号
for w2 in segtmp[::-1]: # 扫描感叹号前的情感词,发现后权值+2,然后退出循环
if w2 in posdict or negdict:
poscount3 += 2
negcount3 += 2
break
i += 1 # 扫描词位置前移


# 以下是防止出现负数的情况
pos_count = 0
neg_count = 0
if poscount3 < 0 and negcount3 > 0:
neg_count += negcount3 - poscount3
pos_count = 0
elif negcount3 < 0 and poscount3 > 0:
pos_count = poscount3 - negcount3
neg_count = 0
elif poscount3 < 0 and negcount3 < 0:
neg_count = -poscount3
pos_count = -negcount3
else:
pos_count = poscount3
neg_count = negcount3

count1.append([pos_count, neg_count])
count2.append(count1)
count1 = []

return count2

def sentiment_score(senti_score_list):
score = []
for review in senti_score_list:
score_array = np.array(review)
Pos = np.sum(score_array[:, 0])
Neg = np.sum(score_array[:, 1])
AvgPos = np.mean(score_array[:, 0])
AvgPos = float('%.1f'%AvgPos)
AvgNeg = np.mean(score_array[:, 1])
AvgNeg = float('%.1f'%AvgNeg)
StdPos = np.std(score_array[:, 0])
StdPos = float('%.1f'%StdPos)
StdNeg = np.std(score_array[:, 1])
StdNeg = float('%.1f'%StdNeg)
score.append([Pos, Neg, AvgPos, AvgNeg, StdPos, StdNeg])
return score



data1= '今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!'
data2= '今天上海天气真差,非常讨厌下雨,把我冻坏了,心情太不高兴了,不高兴,我真的很生气!'
data3= '美国华裔科学家,祖籍江苏扬州市高邮县,生于上海,斯坦福大学物理系,电子工程系和应用物理系终身教授!'
print(sentiment_score(sentiment_score_list(data1)))
print(sentiment_score(sentiment_score_list(data2)))
print(sentiment_score(sentiment_score_list(data3)))