数学基础-离散数学-集合论

集合论是现代各科数学的基础,它起源于十六世纪末期的数集的研究。直到1876-1883年,康托尔发表了一系列有关集合论的文章,奠定了集合论的基础。1904-1908年,策墨罗(Zermelo)提出了集合论的公理系统,统一了数学哲学中的一些矛盾。集合论的观点渗透到古典分析、泛函、概率、函数以及信息论、排队论等现代数学各个领域。典型的应用如数据库原理中的关系代数、粗糙集理论、模糊集理论。

  • (三) 集合与关系
  • 1.集合的概念、性质和基本运算,集合间的关系和特殊集合
  • 2.有限集合的基数,包含排斥原理
  • 3.集合论公理系统,无穷公理和自然数集合
  • 4.二元关系的概念、关系矩阵和关系图
  • 5.关系的逆、合成,关系的基本性质,关系的闭包
  • 6.等价关系和划分,偏序关系与哈斯图
  • 7.任意集合上的函数定义与性质、特殊函数,满射、单射与双射
  • 8.集合的势、无限集合的基数

离散数学-集合论_粗糙集

集合

集合的概念和表示方法

集合由指定范围内的某些特定对象聚集在一起构成。指定范围内的每一个对象称为这个集合的元素

通常用带(不带)标号的大写字母 离散数学-集合论_离散数学_02 表示集合;通常用带(不带)标号的小写字母 离散数学-集合论_粗糙集_03 表示元素

固定符号: 自然数集合 离散数学-集合论_粗糙集_04,整数集合 离散数学-集合论_等价关系_05,有理数集合 离散数学-集合论_等价关系_06,实数集合 离散数学-集合论_粗糙集_07,复数集合 离散数学-集合论_离散数学_08

集合是由它包含的元素完全确定的,为了表示一个集合通常有:

  • 枚举法: 如:离散数学-集合论_离散数学_09
  • 描述法: 如:离散数学-集合论_离散数学_10
  • 归纳法: 如:离散数学-集合论_粗糙集_11
  • 谓词表示法: 如:离散数学-集合论_等价关系_12离散数学-集合论_粗糙集_13 表示 离散数学-集合论_等价关系_14
  • 文氏图: 文氏图解法是一种利用平面上点的集合作成的对集合的图解。一般用平面上的圆形或方形表示一个集合。

元素与集合之间的“属于关系”是“明确”的,对某个集合 离散数学-集合论_离散数学_15 和元素 离散数学-集合论_粗糙集_16 来说,离散数学-集合论_粗糙集_16 属于集合 离散数学-集合论_离散数学_15,记为 离散数学-集合论_离散数学_19,或者者 离散数学-集合论_粗糙集_16 不属于集合 离散数学-集合论_离散数学_15,记为 离散数学-集合论_粗糙集_22,两者必居其一且仅居其一。

集合是由它包含的元素完全确定的。所以集合的特征就是集合中元素的特征

1、互异性: 集合中的元素都是不同的,凡是相同的元素,均视为同一个元素;
2、无序性: 集合中的元素是没有顺序的。
3、确定性: 任何一个对象,或者是这个集合的元素,或者不是,二者必居其一;
4、多样性: 集合中的元素可以是任意的对象,相互独立,不要求一定要具备明显的共同特征。

集合与集合的关系:

1、集合 离散数学-集合论_离散数学_23 中的元素完全相同,我们称这样的两个集合相等;
2、设 离散数学-集合论_离散数学_23 是任意两个集合,如果 离散数学-集合论_离散数学_25 的每个元素都是 离散数学-集合论_离散数学_15 的元素,则称 离散数学-集合论_离散数学_25离散数学-集合论_离散数学_15 的子集合,简称子集;这时也称 离散数学-集合论_离散数学_15 包含 离散数学-集合论_离散数学_25,或 离散数学-集合论_离散数学_25离散数学-集合论_离散数学_15 包含,记作 离散数学-集合论_粗糙集_33离散数学-集合论_离散数学_34,称“离散数学-集合论_离散数学_35”或“离散数学-集合论_粗糙集_36”为包含关系,如果 离散数学-集合论_离散数学_25 不被 离散数学-集合论_离散数学_15 所包含,则记作 离散数学-集合论_粗糙集_39。上述包含定义的数学语言描述为:$B \subseteq A \Leftrightarrow $ 对任意 离散数学-集合论_离散数学_40,如 离散数学-集合论_等价关系_41,则 离散数学-集合论_等价关系_42。显然,对任意集合 离散数学-集合论_离散数学_15,都有 离散数学-集合论_粗糙集_44

定理:离散数学-集合论_粗糙集_45 是任意两个集合,则 离散数学-集合论_粗糙集_46

3、设 离散数学-集合论_离散数学_23 是任意两个集合,如果 离散数学-集合论_离散数学_34 并且 离散数学-集合论_离散数学_49,则称 离散数学-集合论_离散数学_25离散数学-集合论_离散数学_15真子集,记作 离散数学-集合论_离散数学_34,称“离散数学-集合论_等价关系_53”为真包含关系,如果 离散数学-集合论_离散数学_25 不是 离散数学-集合论_离散数学_15 的真子集,则记作 离散数学-集合论_粗糙集_56。上述真子集的数学语言描述为:$B \subset A \Leftrightarrow $ 对任意 离散数学-集合论_离散数学_40,如 离散数学-集合论_等价关系_41,则 离散数学-集合论_等价关系_42,并且,离散数学-集合论_粗糙集_60,但是 离散数学-集合论_离散数学_61

4、空集: 不含任何元素的集合叫做空集,记作 离散数学-集合论_离散数学_62
定理: 空集是一切集合的子集
定理: 空集是绝对唯一的。

5、在一个相对固定的范围内,包含此范围内所有元素的集合,称为全集,用 离散数学-集合论_离散数学_63离散数学-集合论_等价关系_64

6、有限集和无限集

集合 离散数学-集合论_离散数学_15 中元素的数目称为集合 离散数学-集合论_离散数学_15基数,记为离散数学-集合论_离散数学_67
离散数学-集合论_离散数学_67 是有限的,则称集合 离散数学-集合论_离散数学_15 为有限集。
离散数学-集合论_离散数学_67 是无限的,则称集合 离散数学-集合论_离散数学_15

7、离散数学-集合论_等价关系_72

如果一个集合 离散数学-集合论_离散数学_15 含有 离散数学-集合论_等价关系_74 个元素,则称集合 离散数学-集合论_离散数学_15离散数学-集合论_等价关系_74 元集,称 离散数学-集合论_离散数学_15 的含有 离散数学-集合论_等价关系_72个(离散数学-集合论_粗糙集_79)元素的子集为 离散数学-集合论_粗糙集_80离散数学-集合论_离散数学_81
例 设 离散数学-集合论_等价关系_82,求出 离散数学-集合论_离散数学_15 的全部 离散数学-集合论_等价关系_72

子集总数:

一般来说,对于 离散数学-集合论_等价关系_74 元集 离散数学-集合论_离散数学_15,它的 离散数学-集合论_等价关系_72 (离散数学-集合论_粗糙集_79) 元子集有 离散数学-集合论_离散数学_89个,所以不同的子集总数有 2^n 个:

离散数学-集合论_离散数学_90

7、幂集
离散数学-集合论_离散数学_15 为任意集合,把 离散数学-集合论_离散数学_15 的所有不同子集(包括全集空集)构成的集合叫做 离散数学-集合论_离散数学_15幂集,记为 离散数学-集合论_粗糙集_94(由 A 的所有子集组成的集合,称为 A 的幂集)。
显然,若集合 离散数学-集合论_离散数学_15离散数学-集合论_等价关系_74 个元素,则集合 离散数学-集合论_离散数学_15 共有 离散数学-集合论_离散数学_98 个子集,即:离散数学-集合论_等价关系_99

集合的覆盖和划分

给定非空集合 离散数学-集合论_离散数学_15,设 离散数学-集合论_等价关系_101,若
(1) 离散数学-集合论_粗糙集_102
(2) 离散数学-集合论_等价关系_103
(3) 离散数学-集合论_等价关系_104
(4) 离散数学-集合论_离散数学_105
满足(1)(2)(3)的集合 离散数学-集合论_离散数学_106 称为集合 离散数学-集合论_离散数学_15覆盖
满足(1)(2)(3)(4)条的集合 离散数学-集合论_离散数学_106 称为集合 离散数学-集合论_离散数学_15划分

集合运算

设A、B是两个集合
(1) 并集 离散数学-集合论_离散数学_110
(2) 交集 离散数学-集合论_等价关系_111
(3) 差集 离散数学-集合论_离散数学_112
(4) 补集(绝对补) 离散数学-集合论_粗糙集_113
(5) 对称差集 离散数学-集合论_粗糙集_114

离散数学-集合论_等价关系_115

跟数理逻辑命题公式的等价公式一一对应的?

序偶与笛卡尔积

由两个元素 离散数学-集合论_等价关系_116 按照一定的次序组成的二元组称为有序偶对(序偶)记作 离散数学-集合论_离散数学_117 其中 离散数学-集合论_离散数学_40 为第一个元素,离散数学-集合论_等价关系_119为第二个元素。

(1) 序偶可以看作是具有两个元素的集合;
(2) 但是序偶中的两个元素具有确定的次序。即 离散数学-集合论_粗糙集_120,但是 离散数学-集合论_粗糙集_121
(3) 给定序偶 离散数学-集合论_等价关系_122离散数学-集合论_等价关系_123,如果 离散数学-集合论_粗糙集_124,则 离散数学-集合论_粗糙集_125

离散数学-集合论_粗糙集_126 是两个集合,称集合: 离散数学-集合论_等价关系_127 为集合 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25笛卡尔积

注意:
(1) 集合 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的笛卡儿积 离散数学-集合论_等价关系_132 仍然是集合;
(2) 集合 离散数学-集合论_等价关系_132 中的元素是序偶,序偶中的第一个元素取自 离散数学-集合论_粗糙集_80,第二个元素取自 离散数学-集合论_等价关系_135

笛卡尔积的性质:
(1) 笛卡儿积不满足交换律;
(2) 离散数学-集合论_粗糙集_136 当且仅当 离散数学-集合论_等价关系_137 或者 离散数学-集合论_粗糙集_138
(3) 笛卡尔积不满足结合律:
(4) 对有限集 离散数学-集合论_离散数学_23,有 离散数学-集合论_离散数学_140
(5) 设 离散数学-集合论_离散数学_141 是任意三个集合,则
离散数学-集合论_离散数学_142
(6) 设 离散数学-集合论_等价关系_143 是集合,若 离散数学-集合论_离散数学_144离散数学-集合论_等价关系_145,则 离散数学-集合论_粗糙集_146



关系

关系的概念

离散数学-集合论_粗糙集_147

关系具有一定的性质:自反,反自反,对称,反对称,传递
一些具有上述一种或者同时具有几种性质的关系具有重要的研究意义,如相容关系等价关系偏序关系全序关系

离散数学-集合论_离散数学_23 为两个非空集合,称 离散数学-集合论_等价关系_132 的任何子集 离散数学-集合论_粗糙集_07 为从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25二元关系,简称关系(当我们在说关系时,就是指的二元关系)。如 离散数学-集合论_粗糙集_153,则称 离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_15

这个概念需要看看书!1!

当集合 离散数学-集合论_离散数学_23 都是有限集时,离散数学-集合论_等价关系_132 共有 离散数学-集合论_等价关系_158 个不同的子集,即从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的不同关系共有 离散数学-集合论_等价关系_158

(二元)关系是一组序偶。

集合 离散数学-集合论_离散数学_15 上:
全域关系 离散数学-集合论_离散数学_163
空关系 离散数学-集合论_粗糙集_164
恒等关系 离散数学-集合论_离散数学_165

例:离散数学-集合论_等价关系_166,求 离散数学-集合论_粗糙集_167 上的关系 离散数学-集合论_粗糙集_168 (大于)。
离散数学-集合论_粗糙集_169

例:离散数学-集合论_等价关系_166,求 离散数学-集合论_粗糙集_167 上的整除关系 离散数学-集合论_粗糙集_07
离散数学-集合论_粗糙集_173

例:离散数学-集合论_粗糙集_167 上的恒等关系 离散数学-集合论_离散数学_106
离散数学-集合论_粗糙集_176

前域和值域:

dom=domain ran=range

离散数学-集合论_粗糙集_07二元关系,由 离散数学-集合论_等价关系_178 的所有 离散数学-集合论_离散数学_40 组成的集合 离散数学-集合论_等价关系_180 称为 离散数学-集合论_粗糙集_07前域,即 离散数学-集合论_离散数学_182。使 离散数学-集合论_等价关系_178 的所有 离散数学-集合论_等价关系_119 组成的集合 离散数学-集合论_粗糙集_185 称作 离散数学-集合论_粗糙集_07值域。即:离散数学-集合论_离散数学_187离散数学-集合论_粗糙集_07前域值域一起称作 离散数学-集合论_粗糙集_07,记作 离散数学-集合论_离散数学_190,即离散数学-集合论_粗糙集_191

例: 离散数学-集合论_离散数学_192,则

离散数学-集合论_离散数学_193

求定义在 离散数学-集合论_等价关系_05 上关系的前域、值域和域
(1) 离散数学-集合论_等价关系_195
(2) 离散数学-集合论_离散数学_196

(1) 离散数学-集合论_粗糙集_197
(2) 离散数学-集合论_等价关系_198

离散数学-集合论_离散数学_199 表示一个家庭中父母子女四个人的集合,确定 离散数学-集合论_粗糙集_200 上的一个长幼关系 离散数学-集合论_粗糙集_07,指出该关系的定义域、值域和域。

离散数学-集合论_等价关系_202

关系的表示法

(1) 集合表示法

例:
(a) 设 离散数学-集合论_等价关系_203,写出从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的不同关系
(b) 写出定义在 离散数学-集合论_粗糙集_07 上的“相等”关系。
解:
(a) 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的不同关系有: 离散数学-集合论_等价关系_209
(b) 设 离散数学-集合论_粗糙集_07 上的“相等”关系为 离散数学-集合论_离散数学_106,则 离散数学-集合论_离散数学_212

(2) 关系图法

(a) 离散数学-集合论_离散数学_49
离散数学-集合论_粗糙集_214离散数学-集合论_粗糙集_07 是从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的一个二元关系,则规定 离散数学-集合论_粗糙集_07

(1) 设 离散数学-集合论_离散数学_219离散数学-集合论_粗糙集_220,分别为图中的结点,用“。”表示;
(2) 如 离散数学-集合论_等价关系_221,则从 离散数学-集合论_等价关系_222离散数学-集合论_粗糙集_223 可用有向边 离散数学-集合论_等价关系_224相连。离散数学-集合论_离散数学_225 为对应图中的有向边。
(b) 离散数学-集合论_离散数学_226
离散数学-集合论_离散数学_227离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_15 上的关系,则 离散数学-集合论_粗糙集_07

(1) 设 离散数学-集合论_离散数学_219 为图中节点,用“。”表示;
(2) 如 离散数学-集合论_离散数学_232,则从 离散数学-集合论_等价关系_222离散数学-集合论_离散数学_234 可用有向边 离散数学-集合论_等价关系_235 相连。离散数学-集合论_等价关系_236 为对应图中的有向边;
(3) 如 离散数学-集合论_离散数学_232,则从 离散数学-集合论_等价关系_222离散数学-集合论_离散数学_234

(3) 关系矩阵(有限集)
·设 离散数学-集合论_粗糙集_214离散数学-集合论_粗糙集_07 是从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的一个二元关系,称矩阵 离散数学-集合论_粗糙集_244 为关系 离散数学-集合论_粗糙集_07

离散数学-集合论_等价关系_246

又称 离散数学-集合论_等价关系_247离散数学-集合论_粗糙集_07 的邻接矩阵。
注意:离散数学-集合论_粗糙集_80对应矩阵元素的行下标离散数学-集合论_等价关系_135中元素序号对应矩阵元素的列下标关系矩阵是 离散数学-集合论_等价关系_251,称为布尔矩阵

集合A上关系的性质

本节涉及到的关系,如无特别声明,都是假定其前域和后域相同。即都为定义在集合 离散数学-集合论_离散数学_15 上的关系,且 离散数学-集合论_离散数学_15

离散数学-集合论_粗糙集_254

其对应的关系图和关系矩阵的性质一定要记住。
注意自反一定要包含所有元素。不然不叫自反。

总结
对任意给定的 离散数学-集合论_离散数学_15 上的关系 离散数学-集合论_粗糙集_07,可以采用下面的方法判定它所具有的性质:
(1) 定义判定法;
(2) 关系矩阵判定法;
(3) 关系图判定法;

深度理解1:
自反性与反自反性: 是否每个元素与其本身构成关系?还是每个元素与自己都没有关系?
对称性与反对称性: 关系是否是完全双向的?是否是绝对单向的?在后面,配合传递性,对称性自然引出了等价关系,反对称性引出了偏序关系。
传递性: 传递性意味着关系的扁平化,在“距离”上的invariance。

深度理解2:
自反性: 离散数学-集合论_离散数学_257 事物分类要求每个事物都要在一个分类中;划分要求每个元素都要在一个划分块中;
对称性: 离散数学-集合论_离散数学_258 事物的分类要求同一类的事物要有共同的特性,划分需要保证每个划分块的元素地位相等。也就是说一个类中的元素都可以代表这一个类。
传递性: 离散数学-集合论_等价关系_259

https://www.zhihu.com/question/22525311/answer/2152383234?utm_id=0

空关系是一种特殊关系,指关系集 离散数学-集合论_等价关系_132 中的子集 离散数学-集合论_离散数学_62
非空集合中的空关系反自反的、对称的、反对称的和传递的,但不是自反的空集合中的空关系则是自反的、反自反的、对称的、反对称的和传递的。非空集合的空关系的矩阵各元素都是 0 。

例:离散数学-集合论_离散数学_262离散数学-集合论_粗糙集_07离散数学-集合论_粗糙集_94 上的包含关系,则 离散数学-集合论_等价关系_265

离散数学-集合论_粗糙集_266

离散数学-集合论_粗糙集_267

关系的运算

关系和合成运算和关系的逆运算结果为一个新的关系。闭包运算通过扩充已有关系的一些序偶的办法得到具有某些特殊性质的新关系。

关系的逆运算

离散数学-集合论_粗糙集_126 是两个集合,离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的关系,则从 离散数学-集合论_离散数学_25离散数学-集合论_离散数学_15 的关系
离散数学-集合论_粗糙集_274,称为 离散数学-集合论_粗糙集_07 的逆关系,运算“离散数学-集合论_离散数学_276”和“离散数学-集合论_粗糙集_277”称为逆运算
注意:关系是一种集合,逆运算的结果也是一个集合。
离散数学-集合论_粗糙集_278
离散数学-集合论_等价关系_279

关系的复合运算

离散数学-集合论_离散数学_141 是三个集合,离散数学-集合论_粗糙集_07 是从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的关系,离散数学-集合论_离散数学_106 是从 离散数学-集合论_离散数学_25离散数学-集合论_离散数学_08 的关系,则 离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_106 的复合关系 离散数学-集合论_粗糙集_289离散数学-集合论_离散数学_15离散数学-集合论_离散数学_08

离散数学-集合论_等价关系_292

运算“o”称为复合运算(合成运算)。

(1) 离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_106 是可复合的 离散数学-集合论_离散数学_295 离散数学-集合论_粗糙集_07 的值域和 离散数学-集合论_离散数学_106 的前域完全相同
(2) 离散数学-集合论_粗糙集_289 的前域是 离散数学-集合论_粗糙集_07 的前域 离散数学-集合论_离散数学_15,值域是 离散数学-集合论_离散数学_106 的值域 离散数学-集合论_离散数学_08;
(3) 离散数学-集合论_等价关系_303 对任意的 离散数学-集合论_等价关系_42离散数学-集合论_离散数学_305,不存在离散数学-集合论_等价关系_306,使得 离散数学-集合论_粗糙集_307离散数学-集合论_粗糙集_308 同时成立。
(4) 离散数学-集合论_粗糙集_309

例:
设集合 离散数学-集合论_离散数学_310 是定义在 离散数学-集合论_离散数学_15 上的二元关系。
(1) 画出 离散数学-集合论_粗糙集_07 的关系图:
(2) 求出 离散数学-集合论_粗糙集_313 并画出其相应的关系图

(1) 离散数学-集合论_粗糙集_07

离散数学-集合论_等价关系_315

离散数学-集合论_离散数学_316

离散数学-集合论_离散数学_317

离散数学-集合论_离散数学_318

总结
利用关系图求关系 离散数学-集合论_粗糙集_07 闭包的方法:
(1) 检查 离散数学-集合论_粗糙集_07 的关系图,在没有自环的结点处加上自环,可得 离散数学-集合论_等价关系_321 的关系图
(2) 检查 离散数学-集合论_粗糙集_07 的关系图,将每条单向边全部改成双向边,可得 离散数学-集合论_粗糙集_323 的关系图
(3) 检查 离散数学-集合论_粗糙集_07 的关系图,从每个结点出发,找到长度不超过 离散数学-集合论_等价关系_74 (离散数学-集合论_等价关系_74 为图中结点的个数)的路径的终点,如果该结点到其终点没有边相连,就加上此边,可得 离散数学-集合论_等价关系_327

离散数学-集合论_粗糙集_328

2021 例:一个题目搞懂关系的复合运算和逆运算:
离散数学-集合论_等价关系_329 是所有人的集合,离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_106 是集合 离散数学-集合论_等价关系_329 上的关系,R={<x,y> | x是y的父亲},S={<x,y> |x是y的母亲} ,离散数学-集合论_粗糙集_333,当关系Q为_____时,离散数学-集合论_等价关系_334 表示 离散数学-集合论_离散数学_40离散数学-集合论_等价关系_119 的妻子。注:用 离散数学-集合论_粗糙集_337 表示关系 离散数学-集合论_离散数学_338离散数学-集合论_粗糙集_339

解析:本题考的是逆关系和复合关系,假设z是x的子女记作= {<z,y>| z 是y的子女},S={<x,z> |x是z的母亲},根据复合关系:离散数学-集合论_粗糙集_340离散数学-集合论_等价关系_341

关系的闭包运算

关系的闭包是对某一不满足某种特性的关系进行最“经济”(即增加尽可能少的序对)的扩充,使之具有这一特性。

自反(对称、传递)闭包:离散数学-集合论_粗糙集_07 是定义在 离散数学-集合论_离散数学_15 上的关系,离散数学-集合论_粗糙集_07 的自反(对称、传递)闭包是 离散数学-集合论_离散数学_15 上的关系 离散数学-集合论_等价关系_346,使 离散数学-集合论_等价关系_346 满足:
(1) 离散数学-集合论_等价关系_346 是自反的 (对称的或传递的);
(2) 离散数学-集合论_离散数学_349
(3) 对 离散数学-集合论_离散数学_15 上任何包含 离散数学-集合论_粗糙集_07 的自反((对称、传递) 关系离散数学-集合论_离散数学_352,有 离散数学-集合论_离散数学_353,记为 离散数学-集合论_等价关系_321 (对称闭包记作 离散数学-集合论_粗糙集_323,传递闭包记作 离散数学-集合论_等价关系_327))。

又有如下定义:
离散数学-集合论_粗糙集_07 是非空集合 离散数学-集合论_离散数学_15 上的关系,在关系 离散数学-集合论_粗糙集_07 中,可能有或无性质 离散数学-集合论_等价关系_329,如自反 离散数学-集合论_等价关系_361,对称 离散数学-集合论_离散数学_362,传递 离散数学-集合论_粗糙集_363,若存在包含 离散数学-集合论_粗糙集_07,满足性 离散数学-集合论_等价关系_329 的关系 离散数学-集合论_离散数学_106,使得 离散数学-集合论_离散数学_106 是所有包含 离散数学-集合论_粗糙集_07,满足 离散数学-集合论_等价关系_329 的关系的子集,那么称 离散数学-集合论_离散数学_106离散数学-集合论_粗糙集_07 关于 离散数学-集合论_等价关系_329

离散数学-集合论_粗糙集_07 是非空集合 离散数学-集合论_离散数学_15 上的关系,关系 离散数学-集合论_粗糙集_07 的自反闭包,是 离散数学-集合论_粗糙集_07 进行了最小扩充以满足性质 离散数学-集合论_等价关系_329 的关系 离散数学-集合论_等价关系_346

关系的闭包是一个关系。

定理:离散数学-集合论_粗糙集_07 是集合 离散数学-集合论_离散数学_15 上的二元关系,则:
(1) 离散数学-集合论_等价关系_381离散数学-集合论_等价关系_382 是集合 A 上的恒等关系
(2) 离散数学-集合论_等价关系_383离散数学-集合论_粗糙集_384 是关系 R 中每个序偶位置颠倒,离散数学-集合论_离散数学_385 相当于 离散数学-集合论_粗糙集_07 中的每个序偶都有对应的位置颠倒的序偶在 离散数学-集合论_粗糙集_323 中。
(3) 若 离散数学-集合论_粗糙集_388离散数学-集合论_粗糙集_389

集合上的关系之相容关系

定义:离散数学-集合论_粗糙集_07 是给定集合 离散数学-集合论_粗糙集_167 上的一个二元关系,若 离散数学-集合论_粗糙集_07自反的对称的,则称 离散数学-集合论_粗糙集_07 是相容的,即 离散数学-集合论_粗糙集_07相容关系

对相容关系而言,在它的图形表示中,每个元素的环不必画出,两个元素之间的相反方向弧也不必画出,可代之以一条无向弧,这样得到的图称为相容关系图。相容关系的关系矩阵时,我们只需写出该关系矩阵的下三角部分就够了。 称为相容关系矩阵

集合上的关系之等价关系

离散数学-集合论_粗糙集_395

一、等价关系

离散数学-集合论_粗糙集_07 是定义在非空集合 离散数学-集合论_离散数学_15 上的关系,如果 离散数学-集合论_粗糙集_07 是自反的、对称的、传递的,则称 离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_15

如果 离散数学-集合论_粗糙集_07 是自反的、对称的、传递的,那么根据集合 离散数学-集合论_离散数学_15

例: 设集合 离散数学-集合论_离散数学_403。验证,离散数学-集合论_粗糙集_07离散数学-集合论_等价关系_405 上的等价关系。
解:离散数学-集合论_粗糙集_07

离散数学-集合论_等价关系_407

通过矩阵可以看出,离散数学-集合论_粗糙集_07

例:离散数学-集合论_等价关系_409,如下定义 离散数学-集合论_离散数学_15 上的关系 离散数学-集合论_粗糙集_07

离散数学-集合论_离散数学_412

其中 离散数学-集合论_离散数学_413 叫做 离散数学-集合论_离散数学_40离散数学-集合论_等价关系_119离散数学-集合论_等价关系_416 同余即 离散数学-集合论_离散数学_40 除以 离散数学-集合论_等价关系_416 的余数与 离散数学-集合论_等价关系_119 除以 离散数学-集合论_等价关系_416

离散数学-集合论_等价关系_421

二、等价类

离散数学-集合论_粗糙集_07 是非空集合 离散数学-集合论_离散数学_15 上的等价关系,对任意 离散数学-集合论_等价关系_42,称集合

离散数学-集合论_粗糙集_425

离散数学-集合论_离散数学_426离散数学-集合论_离散数学_40 关于 离散数学-集合论_粗糙集_07 的等价类,简称为 离散数学-集合论_离散数学_40

自省:注意等价类是一个集合,是集合 离散数学-集合论_粗糙集_80 中通过 离散数学-集合论_粗糙集_431

总结:等价关系是一种条件极其强大(简单)的关系,它完全消解的关系运算中的 invariant,完全扁平化。

举例说明:
离散数学-集合论_等价关系_432离散数学-集合论_等价关系_433离散数学-集合论_离散数学_434
离散数学-集合论_离散数学_434离散数学-集合论_离散数学_436 关于 离散数学-集合论_粗糙集_07

例:离散数学-集合论_等价关系_438离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_15 上的以 离散数学-集合论_粗糙集_441 为模的同余关系。
求:(1) 离散数学-集合论_粗糙集_07 的所有等价类: (2) 画出 离散数学-集合论_粗糙集_07 的关系图。
解:
(1)
离散数学-集合论_粗糙集_444

离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_15 上的以 离散数学-集合论_粗糙集_441 为模的同余关系。首先证明 离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_15

根据定义,离散数学-集合论_粗糙集_450离散数学-集合论_离散数学_451离散数学-集合论_离散数学_452,故 离散数学-集合论_离散数学_453

其他同理。

(2) 关系图

离散数学-集合论_粗糙集_454

三、商集

离散数学-集合论_粗糙集_07 是非空集合 离散数学-集合论_离散数学_15 上的等价关系,由 离散数学-集合论_粗糙集_07 确定的一切等价类的集合,称为集合 离散数学-集合论_离散数学_15 上关于 离散数学-集合论_粗糙集_07 的商集,记为 离散数学-集合论_等价关系_460,即:

离散数学-集合论_粗糙集_461

例: 设集合 离散数学-集合论_等价关系_438离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_15 上以 离散数学-集合论_粗糙集_441 为模的同余关系。求 离散数学-集合论_等价关系_460
解:
商集

离散数学-集合论_等价关系_467

离散数学-集合论_等价关系_468

计算商集 离散数学-集合论_等价关系_460 的通用过程:
(1) 计算等价类;
(2) 写出等价类组成的集合;

四、等价关系与划分
定理:离散数学-集合论_粗糙集_07 是非空集合 离散数学-集合论_离散数学_15 上的等价关系,则 离散数学-集合论_离散数学_15离散数学-集合论_粗糙集_07 的商集 离散数学-集合论_等价关系_460离散数学-集合论_离散数学_15 的一个划分,称之为离散数学-集合论_粗糙集_431

定理: 给定集合 离散数学-集合论_离散数学_15 的一个划分 离散数学-集合论_粗糙集_478,则由该划分确定的关系:

离散数学-集合论_等价关系_479

离散数学-集合论_离散数学_15 上的等价关系。我们称该关系 离散数学-集合论_粗糙集_07由划分 离散数学-集合论_粗糙集_482

由上述定理可知,非空集合的一个划分决定这个集合上的一个等价关系,反之亦然,有限集上的等价关系的个数就等于这个集合的划分的个数,也就是 Bell 数

一个包含 n 元素的集合 A,有 离散数学-集合论_离散数学_98 个子集,离散数学-集合论_离散数学_484 笛卡尔积集合中有 离散数学-集合论_等价关系_485个元素,对应的不同的二元关系(子集)有 离散数学-集合论_粗糙集_486

离散数学-集合论_等价关系_487

由上述第二个定理,集合 A 的一个划分所有子集自己的笛卡尔积并集集合 A 上的等价关系

本题目求 A 上所有的等价关系,也就是求集合 A 的所有的划分。举例:

离散数学-集合论_粗糙集_488

离散数学-集合论_粗糙集_489

离散数学-集合论_粗糙集_490 为集合 A 的等价关系。
其商集为:离散数学-集合论_离散数学_491

集合上的关系之偏序关系

离散数学-集合论_粗糙集_07 是非空集合 离散数学-集合论_离散数学_15 上的关系,如果 离散数学-集合论_粗糙集_07自反的反对称的传递的,则称 离散数学-集合论_粗糙集_07离散数学-集合论_离散数学_15 上的偏序关系,简称偏序,记为 离散数学-集合论_等价关系_497,读作“小于等于”,并将“离散数学-集合论_等价关系_498"记为 离散数学-集合论_等价关系_499。序偶 离散数学-集合论_等价关系_500 称为偏序集
注:小于等于的意思为依照这个序,离散数学-集合论_离散数学_40 排在 离散数学-集合论_等价关系_119 的前面或者 离散数学-集合论_离散数学_40 就是 离散数学-集合论_等价关系_119

离散数学-集合论_等价关系_500 为偏序集,对于任意的 离散数学-集合论_离散数学_506,如果 离散数学-集合论_等价关系_507或者 离散数学-集合论_离散数学_508成立,则称 离散数学-集合论_离散数学_40离散数学-集合论_等价关系_119可比的

盖住关系和哈斯图:
离散数学-集合论_等价关系_500 为偏序集。对于任意的 离散数学-集合论_离散数学_506,若 离散数学-集合论_等价关系_507 且不存在 离散数学-集合论_粗糙集_514,使得 离散数学-集合论_离散数学_515,则称 离散数学-集合论_等价关系_119 盖住 离散数学-集合论_离散数学_40注意盖住关系是两个元素之间的关系)。(每个序偶里的 离散数学-集合论_等价关系_119 只比 离散数学-集合论_离散数学_40

离散数学-集合论_等价关系_497 是集合 离散数学-集合论_离散数学_15 上的偏序关系,则 离散数学-集合论_等价关系_497哈斯图作图规则如下:
(1) 图中每个顶点代表 离散数学-集合论_离散数学_15 的一个元素;
(2) 若 离散数学-集合论_等价关系_507,即 离散数学-集合论_等价关系_119 盖住 离散数学-集合论_离散数学_40,则顶点 离散数学-集合论_等价关系_119 在顶点 离散数学-集合论_离散数学_40 的上方且 离散数学-集合论_离散数学_40离散数学-集合论_等价关系_119

离散数学-集合论_粗糙集_531

离散数学-集合论_粗糙集_532

离散数学-集合论_等价关系_500 为偏序集合,在 A 的一个子集中,如果每两个元素都是有关系的,则称这个子集为(在哈斯图上就是一条从最低点到最高点的连线)。在 A 的一个子集中,如果每两个元素都是无关的,则称这个子集为反链

约定,若 离散数学-集合论_离散数学_15 的子集只有单个元素,则这个子集既是又是反链

定理:离散数学-集合论_离散数学_535 为一个偏序集,若 离散数学-集合论_离散数学_15 的最长链的长度为 离散数学-集合论_等价关系_74,则 离散数学-集合论_离散数学_15 存在 离散数学-集合论_等价关系_74 个划分块的划分,每个块都是反链

集合上的关系之全序关系

离散数学-集合论_等价关系_500 是一个偏序关系,若对任意 离散数学-集合论_等价关系_541,总有 离散数学-集合论_等价关系_507离散数学-集合论_离散数学_508二者必居其一(也就是 A 中任意两个不同的元素的正反序偶必有且只有其中一个),则称关系“离散数学-集合论_等价关系_497”为全序关系,简称全序,或者线序关系,简称线序。称 离散数学-集合论_等价关系_500全序集,或者线序集,或者
可以看出:
全序关系是偏序关系,反之则不然。
全序关系的哈斯图是一条线。

集合上的关系之函数关系

函数也叫映射、变换或对应。
函数是数学的一个基本概念。这里将高等数学中连续函数的概念推广到对离散量的讨论,即将函数看作是一种特殊的二元关系
函数的概念在日常生活和计算机科学中非常重要。如各种高级程序语言中使用了大量的函数。实际上,计算机的任何输出都可看成是某些输入的函数。

离散数学-集合论_粗糙集_546 是集合 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的关系,如果对每个 离散数学-集合论_等价关系_42,都存在惟一的 离散数学-集合论_等价关系_306,使得 离散数学-集合论_粗糙集_551,则称关系 离散数学-集合论_离散数学_552离散数学-集合论_粗糙集_80离散数学-集合论_等价关系_135,记为离散数学-集合论_粗糙集_555(重点是经过函数运算之后的必须有结果并且结果输出唯一(不能有两个结果,两个不同的输入可以有相同的结果)的才叫函数。)
离散数学-集合论_离散数学_15 为函数 离散数学-集合论_粗糙集_546定义域,记为domf=A;
离散数学-集合论_等价关系_558 为函数 离散数学-集合论_粗糙集_546值域,记为ranf。

离散数学-集合论_等价关系_560

结论
如果关系 离散数学-集合论_粗糙集_546 具备下列两种情况之一,那么 离散数学-集合论_粗糙集_546 就不是函数:
(1) 存在元素 离散数学-集合论_离散数学_19,在 离散数学-集合论_离散数学_25 中没有象;(这个函数没有结果不行!)
(2) 存在元素 离散数学-集合论_离散数学_19,有两个及两个以上的象。(这个函数有多个输出结果不行!)

例:离散数学-集合论_粗糙集_566,请分别写出 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的不同关系和不同函数。
解:
因为 离散数学-集合论_离散数学_569,所以 离散数学-集合论_离散数学_570,即 离散数学-集合论_离散数学_571,此时从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的不同的关系有 离散数学-集合论_粗糙集_574 个(离散数学-集合论_离散数学_571

离散数学-集合论_粗糙集_576

可以认为是函数的:

离散数学-集合论_离散数学_577

定义: 所有从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25函数的集合记作 离散数学-集合论_粗糙集_580。符号化表示为:

离散数学-集合论_离散数学_581

离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 总共可能有 离散数学-集合论_离散数学_584离散数学-集合论_离散数学_25 中的 离散数学-集合论_等价关系_74 个元素,每一个都可能由 离散数学-集合论_离散数学_15离散数学-集合论_等价关系_72 个中的其中 离散数学-集合论_粗糙集_589

集合 A 到集合 B 总共可以组成函数个数的计算方法:
非空集合 A 和 非空集合 B,|A| = m,|B| = n, 总共可以组成多少个函数的计算方法:集合 A 中的 m 个元素每一个都可以由集合 B 中的 n 个元素中的任意一个组成一个函数关系中的一个序偶,m 个 n 相乘,总共为 离散数学-集合论_等价关系_590

集合 A 到集合 B 总共可以组成单射函数个数计算方法:
假设非空集合 A={1,2} 和 非空集合 B={a,b,c},则单射函数的形式如下

离散数学-集合论_离散数学_591

两个圆圈的地方相当于要从集合 B 的 3 个元素中选择 2 个(单射要求集合 B 中的元素不能重复使用),也就是 离散数学-集合论_粗糙集_592,并且是排列问题(填入上边的空不同,会组成不同的序偶,从而组成不同的函数)。

函数与关系的差别:
函数本质上是关系,一个函数关系包含的序偶的集合(也就是这个函数关系)是定义域和值域的笛卡尔积的子集
函数是一种特殊的关系,它与一般关系比较具备如下差别
(1) 从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的不同的关系有 离散数学-集合论_粗糙集_595 个(集合 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_597 个子集,集合 离散数学-集合论_离散数学_25离散数学-集合论_粗糙集_599 个子集),但从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的不同的函数却仅有 离散数学-集合论_等价关系_602 个。(个数差别)
(2) 关系的第一个元素可以相同,函数的第一元素一定是互不相同的。(集合元素的第一个元素存在差别)
(3) 每一个函数的基数都为 离散数学-集合论_离散数学_67 个(离散数学-集合论_离散数学_604),但关系的基数却为从零一直到 离散数学-集合论_等价关系_605。(集合基数的差别)

离散数学-集合论_粗糙集_546 是从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25函数
(1) 对任意 离散数学-集合论_等价关系_609,如果 离散数学-集合论_粗糙集_610,有 离散数学-集合论_离散数学_611,则称 离散数学-集合论_粗糙集_546 为从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25单射(不同的 离散数学-集合论_离散数学_40 对应不同的 离散数学-集合论_等价关系_119,一个输入对应一个输出);
(2) 如果 离散数学-集合论_粗糙集_617,则称 离散数学-集合论_粗糙集_546 为从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25满射;
(3) 若 离散数学-集合论_粗糙集_546满射且是单射,则称 离散数学-集合论_粗糙集_546 为从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25双射
(4) 若 离散数学-集合论_粗糙集_153,则称 离散数学-集合论_粗糙集_546离散数学-集合论_离散数学_15 上的函数,当 离散数学-集合论_离散数学_15 上的函数 离散数学-集合论_粗糙集_546双射时,称 离散数学-集合论_粗糙集_546 为一个变换

离散数学-集合论_粗糙集_126 为有限集合,离散数学-集合论_粗糙集_546 是从 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 的函数,则:
离散数学-集合论_粗糙集_546单射的必要条件离散数学-集合论_粗糙集_636
离散数学-集合论_粗糙集_546满射的必要条件离散数学-集合论_粗糙集_638
离散数学-集合论_粗糙集_546双射的必要条件离散数学-集合论_粗糙集_640

基数的概念
一一对应: 给定两个集合 离散数学-集合论_等价关系_329离散数学-集合论_等价关系_06,如果对 离散数学-集合论_等价关系_329 中的每个元素与 离散数学-集合论_等价关系_06 中的每个元素,可以分别两两成对,那么我们说 离散数学-集合论_等价关系_329离散数学-集合论_等价关系_06

集合等势: 当且仅当集合 离散数学-集合论_离散数学_15 的元素与集合 离散数学-集合论_离散数学_25 的元素之间存在着一一对应,集合 离散数学-集合论_离散数学_15 和集合 离散数学-集合论_离散数学_25 为等势的(双射?)。记作 离散数学-集合论_等价关系_651。称为 离散数学-集合论_离散数学_15离散数学-集合论_离散数学_25 具有相同的基数

定理: 在集合族上等势关系是一个等价关系

定义4-4.5:所有与集合 离散数学-集合论_离散数学_15 等势的集合所组成的集合,叫做集合 离散数学-集合论_离散数学_15 的基数,记为 离散数学-集合论_离散数学_656。有限集合的基数就是其元素的个数。这里约定空集的基数为 离散数学-集合论_等价关系_657