【OpenCV】⚠️高手勿入! 半小时学会基本操作 14⚠️ 圆圈检测


概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. (第 14 课)

【OpenCV】基本操作 圆圈检测_子图

霍夫圆变换

霍夫圆变换 (Hough Circle Transform) 的原理和霍夫直线变换类似. 对于一条直线, 我们可以用参数 (r, θ) 表示, 对于圆我们需要三个参数 (x, y, r), 分别代表三个参数 x 圆心, y 圆心, r, 半径.

【OpenCV】基本操作 圆圈检测_子图_02

代码实现

因为霍夫圆检测对噪声比较敏感, 所以首先要对图像做中值滤波.

【OpenCV】基本操作 圆圈检测_子图_03

基于效率考虑, Opencv 中实现的霍夫变换圆检测是基于图像梯度实现, 分为两步:

  1. 检测变换, 发现可能的圆心
  2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

格式:

cv2.HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None)

参数:

  • image: 输入图像
  • method: 判别方法, 只有 HOUGH_GRADIENT (计算梯度) 一个方法
  • dp: 累计阈值
  • minDist: 间距, 小于间距判断成一个圆
  • param1: Canny 边缘检测的最大阈值
  • param2: 在检测阶段圆心累加器阈值, 是否为圆形

例一

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 读取图片
image = cv2.imread("map.jpg")
image_copy = image.copy()

# 均值迁移滤波
filter = cv2.pyrMeanShiftFiltering(image, 10, 100)

# 转换成灰度图
filter_gray = cv2.cvtColor(filter, cv2.COLOR_BGR2GRAY)

# 霍夫曼圆圈检测
circles = cv2.HoughCircles(filter_gray, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=100, minRadius=0, maxRadius=0)
circles = np.uint16(np.around(circles))

# 遍历
for circle in circles[0, :]:
cv2.circle(image_copy, (circle[0], circle[1]), circle[2], (0, 0, 255), 2)
cv2.circle(image_copy, (circle[0], circle[1]), 2, (255, 0, 0), 2)

# 图片展示
f, ax = plt.subplots(2, 2, figsize=(12, 12))

# 子图
ax[0, 0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
ax[0, 1].imshow(cv2.cvtColor(filter, cv2.COLOR_BGR2RGB))
ax[1, 0].imshow(filter_gray, "gray")
ax[1, 1].imshow(cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB))

# 标题
ax[0, 0].set_title("original")
ax[0, 1].set_title("image filter")
ax[1, 0].set_title("image gray")
ax[1, 1].set_title("image circle")

plt.show()

# 保存结果
cv2.imwrite("map_result.jpg", image_copy)

输出结果:

【OpenCV】基本操作 圆圈检测_子图_04
【OpenCV】基本操作 圆圈检测_代码实现_05

例二

import numpy as np
import cv2
from matplotlib import pyplot as plt

# 读取图片
image = cv2.imread("coin.jpg")
image_copy = image.copy()

# 均值迁移滤波
filter = cv2.pyrMeanShiftFiltering(image, 10, 40)

# 转换成灰度图
filter_gray = cv2.cvtColor(filter, cv2.COLOR_BGR2GRAY)

# 霍夫曼圆圈检测
circles = cv2.HoughCircles(filter_gray, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=100, minRadius=0, maxRadius=0)
circles = np.uint16(np.around(circles))

# 遍历
for circle in circles[0, :]:
cv2.circle(image_copy, (circle[0], circle[1]), circle[2], (0, 0, 255), 2)
cv2.circle(image_copy, (circle[0], circle[1]), 2, (255, 0, 0), 2)

# 图片展示
f, ax = plt.subplots(2, 2, figsize=(12, 12))

# 子图
ax[0, 0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
ax[0, 1].imshow(cv2.cvtColor(filter, cv2.COLOR_BGR2RGB))
ax[1, 0].imshow(filter_gray, "gray")
ax[1, 1].imshow(cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB))

# 标题
ax[0, 0].set_title("original")
ax[0, 1].set_title("image filter")
ax[1, 0].set_title("image gray")
ax[1, 1].set_title("image circle")

plt.show()

# 保存结果
cv2.imwrite("coin_result.jpg", image_copy)

输出结果:

【OpenCV】基本操作 圆圈检测_灰度图_06
【OpenCV】基本操作 圆圈检测_子图_07