引用br/>作者简介:李扬,滴滴出行资深软件开发工程师。2015年加入滴滴出行基础平台部,主要负责HBase和Phoenix以及相关分布式存储技术。在滴滴之前,曾在新浪担任数据工程师,专注于分布式计算和存储。
责编:郭芮(guorui@csdn.net),关注大数据领域。
本文为《程序员》原创文章,未经允许不得转载,更多精彩文章请订阅2017年《程序员》

背景

对接业务类型

HBase是建立在Hadoop生态之上的Database,源生对离线任务支持友好,又因为LSM树是一个优秀的高吞吐数据库结构,所以同时也对接了很多线上业务。在线业务对访问延迟敏感,并且访问趋向于随机,如订单、客服轨迹查询。离线业务通常是数仓的定时大批量处理任务,对一段时间内的数据进行处理并产出结果,对任务完成的时间要求不是非常敏感,并且处理逻辑复杂,如天级别报表、安全和用户行为分析、模型训练等。

多语言支持

HBase提供了多语言解决方案,并且由于滴滴各业务线RD所使用的开发语言各有偏好,所以多语言支持对于HBase在滴滴内部的发展是至关重要的一部分。我们对用户提供了多种语言的访问方式:HBase Java native API、Thrift Server(主要应用于C++、PHP、Python)、JAVA JDBC(Phoenix JDBC)、Phoenix QueryServer(Phoenix对外提供的多语言解决方案)、MapReduce Job(Htable/Hfile Input)、Spark Job、Streaming等。

数据类型

HBase在滴滴主要存放了以下四种数据类型:

统计结果、报表类数据:主要是运营、运力情况、收入等结果,通常需要配合Phoenix进行SQL查询。数据量较小,对查询的灵活性要求高,延迟要求一般。
原始事实类数据:如订单、司机乘客的GPS轨迹、日志等,主要用作在线和离线的数据供给。数据量大,对一致性和可用性要求高,延迟敏感,实时写入,单点或批量查询。
中间结果数据:指模型训练所需要的数据等。数据量大,可用性和一致性要求一般,对批量查询时的吞吐量要求高。
线上系统的备份数据:用户把原始数据存在了其他关系数据库或文件服务,把HBase作为一个异地容灾的方案。

使用场景介绍

场景一:订单事件

这份数据使用过滴滴产品的用户应该都接触过,就是App上的历史订单。近期订单的查询会落在Redis,超过一定时间范围,或者当Redis不可用时,查询会落在HBase上。业务方的需求如下:

在线查询订单生命周期的各个状态,包括status、event_type、order_detail等信息。主要的查询来自于客服系统。
在线历史订单详情查询。上层会有Redis来存储近期的订单,当Redis不可用或者查询范围超出Redis,查询会直接落到HBase。
离线对订单的状态进行分析。
写入满足每秒10K的事件,读取满足每秒1K的事件,数据要求在5s内可用。
    ![](https://s1.51cto.com/images/blog/201804/25/0c3510dcb5babf546925d2649804e58a.png?x-oss-process=image/watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=)
    按照这些要求,我们对Rowkey做出了下面的设计,都是很典型的scan场景。

订单状态表

Rowkey:reverse(order_id) + (MAX_LONG - TS)
Columns:该订单各种状态

订单历史表

Rowkey:reverse(passenger_id | driver_id) + (MAX_LONG - TS)
Columns:用户在时间范围内的订单及其他信息

场景二:司机乘客轨迹

这也是一份滴滴用户关系密切的数据,线上用户、滴滴的各个业务线和分析人员都会使用。举几个使用场景上的例子:用户查看历史订单时,地图上显示所经过的路线;发生司乘纠纷,客服调用订单轨迹复现场景;地图部门用户分析道路拥堵情况。
HBase在滴滴出行的应用场景和最佳实践
用户们提出的需求:

满足App用户或者后端分析人员的实时或准实时轨迹坐标查询;
满足离线大规模的轨迹分析;
满足给出一个指定的地理范围,取出范围内所有用户的轨迹或范围内出现过的用户。 

其中,关于第三个需求,地理位置查询,我们知道MongoDB对于这种地理索引有源生的支持,但是在滴滴这种量级的情况下可能会发生存储瓶颈,HBase存储和扩展性上没有压力但是没有内置类似MongoDB地理位置索引的功能,没有就需要我们自己实现。通过调研,了解到关于地理索引有一套比较通用的GeohHash算法 。

GeoHash是将二维的经纬度转换成字符串,每一个字符串代表了某一矩形区域。也就是说,这个矩形区域内所有的点(经纬度坐标)都共享相同的GeoHash字符串,比如说我在悠唐酒店,我的一个朋友在旁边的悠唐购物广场,我们的经纬度点会得到相同的GeoHash串。这样既可以保护隐私(只表示大概区域位置而不是具体的点),又比较容易做缓存
HBase在滴滴出行的应用场景和最佳实践
但是我们要查询的范围和GeohHash块可能不会完全重合。以圆形为例,查询时会出现如图4所示的一半在GeoHash块内,一半在外面的情况(如A、B、C、D、E、F、G等点)。这种情况就需要对GeoHash块内每个真实的GPS点进行第二次的过滤,通过原始的GPS点和圆心之间的距离,过滤掉不符合查询条件的数据。

图4 范围查询时,边界GeoHash块示意图

最后依据这个原理,把GeoHash和其他一些需要被索引的维度拼装成Rowkey,真实的GPS点为Value,在这个基础上封装成客户端,并且在客户端内部对查询逻辑和查询策略做出速度上的大幅优化,这样就把HBase变成了一个MongoDB一样支持地理位置索引的数据库。如果查询范围非常大(比如进行省级别的分析),还额外提供了MR的获取数据的入口。

两种查询场景的Rowkey设计如下:

单个用户按订单或时间段查询: reverse(user_id) + (Integer.MAX_LONG-TS/1000)
给定范围内的轨迹查询:reverse(geohash) + ts/1000 + user_id

场景三:ETA

ETA是指每次选好起始和目的地后,提示出的预估时间和价格。提示的预估到达时间和价格,最初版本是离线方式运行,后来改版通过HBase实现实时效果,把HBase当成一个KeyValue缓存,带来了减少训练时间、可多城市并行、减少人工干预的好处。
整个ETA的过程如下:

模型训练通过Spark Job,每30分钟对各个城市训练一次;
模型训练第一阶段,在5分钟内,按照设定条件从HBase读取所有城市数据;
模型训练第二阶段在25分钟内完成ETA的计算;
HBase中的数据每隔一段时间会持久化至HDFS中,供新模型测试和新的特征提取。

Rowkey:salting+cited+type0+type1+type2+TS
Column:order, feature
HBase在滴滴出行的应用场景和最佳实践