Description

Given two words (beginWord and endWord), and a dictionary’s word list, find the length of shortest transformation sequence from beginWord to endWord, such that:

  1. Only one letter can be changed at a time.
  2. Each transformed word must exist in the word list. Note that beginWord is not a transformed word.

Note:

  • Return 0 if there is no such transformation sequence.
  • All words have the same length.
  • All words contain only lowercase alphabetic characters.
  • You may assume no duplicates in the word list.
  • You may assume beginWord and endWord are non-empty and are not the same.

Example 1:

Input:

beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]

Output:

5

Explanation:

As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.

Example 2:

Input:

beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]

Output:

0

Explanation:

The endWord "cog" is not in wordList, therefore no possible 
transformation.

分析

题目的意思是:给定开始单词和结束单词,还有一个单词词典,求从开始单词到结束单词的最小路径。

  • 本题用了一个队列,先把start放进去,然后每次从队列里面取字符串,计算字符串与词典之间的距离,如果距离为1,我们就把字符串加入队列,然后长度+1,这样一直遍历到队列为空为止。

代码

class Solution {
public:
int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
unordered_set<string> dict(wordList.begin(),wordList.end());
unordered_map<string,int> m;
queue<string> q;
m[beginWord]=1;
q.push(beginWord);
while(!q.empty()){
string word=q.front();
q.pop();
for(int i=0;i<word.size();i++){
string newWord=word;
for(char ch='a';ch<='z';ch++){
newWord[i]=ch;
if(dict.count(newWord)&&newWord==endWord){
return m[word]+1;
}
if(dict.count(newWord)&&!m.count(newWord)){
q.push(newWord);
m[newWord]=m[word]+1;
}
}
}
}
return 0;
}
};

参考文献

​[编程题]word-ladder​​​​[LeetCode] Word Ladder 词语阶梯​