思路:八数码问题首先要会康托展开来表示它的状态, 根据逆序数直接判断有无解,对于一个八数码,依次排列之后,每次是将空位和相邻位进行调换,研究后会发现,每次调换,逆序数增幅都为偶数,也就是不改变奇偶性,所以只需要根据初始和目标状态的逆序数正负判断即可。 估价函数H:是根据与目标解的曼哈顿距离,也就是每个数字与目标位置的曼哈顿距离之和。

#include<bits/stdc++.h>
using namespace std;

struct Node
{
	int mp[3][3];
	int h,g;
	int Hash;
	int x,y;
	bool operator < (const Node a)const
	{
		if(h==a.h)
			return g>a.g;
		return h>a.h;
	}
	bool check()
	{
		if(x>=0 && x<3 && y>=0 && y<3)
			return true;
		return false;
	}
}s,t;
int Hash[9]={1,1,2,6,24,120,720,5040,40320};
int destination = 322560;
int vis[400000];
int pre[400000];
int dir[4][2]={0,1,0,-1,1,0,-1,0};
int get_hash(Node tmp)
{
	int a[9],k=0;
	for(int i = 0;i<3;i++)
		for(int j = 0;j<3;j++)
			a[k++]=tmp.mp[i][j];
	int ans = 0;
	for(int i = 0;i<9;i++)
	{
		int k = 0;
		for(int j = 0;j<i;j++)
			if(a[j]>a[i])
				k++;
		ans+=Hash[i]*k;
	}
	return ans;
}
bool isok(Node tmp)
{
	int a[9],k=0;
	for(int i = 0;i<3;i++)
		for(int j = 0;j<3;j++)
			a[k++]=tmp.mp[i][j];
	int ans = 0;
	for(int i = 0;i<9;i++)
	{
		for(int j = i+1;j<9;j++)
			if(a[j]&&a[i]&&a[i]>a[j])
				ans++;
	}
	return !(ans&1);
}
int get_h(Node tmp)
{
	int ans = 0;
	for(int i = 0;i<3;i++)
		for(int j = 0;j<3;j++)
			if(tmp.mp[i][j])
               ans+=abs(i-(tmp.mp[i][j]-1)/3)+abs(j-(tmp.mp[i][j]-1)%3);
	return ans;
}
void bfs()
{
	priority_queue<Node>q;
	q.push(s);
	while(!q.empty())
	{
		Node u = q.top();
		q.pop();
		for(int i = 0;i<4;i++)
		{
			Node v = u;
			v.x+=dir[i][0];
			v.y+=dir[i][1];
			if(v.check())
			{
				swap(v.mp[v.x][v.y],v.mp[u.x][u.y]);
				v.Hash = get_hash(v);
				if(vis[v.Hash]==-1 && isok(v))
				{
					vis[v.Hash]=i;
					v.g++;
					pre[v.Hash]=u.Hash;
					v.h=get_h(v);
					q.push(v);
				}
				if(v.Hash==destination)
					return;
			}
		}
	}
}
void print()
{
	string ans = "";
	int nxt = destination;
	while(pre[nxt]!=-1)
	{
		switch(vis[nxt])
		{
			case 0:ans+='r';break;
			case 1:ans+='l';break;
			case 2:ans+='d';break;
			case 3:ans+='u';break;
		}
		nxt = pre[nxt];
	}
	for(int i = ans.size()-1;i>=0;i--)
		putchar(ans[i]);
	puts("");
}
int main()
{
    char str[100];
	while(gets(str)!=NULL)
	{
		int k = 0;
		memset(vis,-1,sizeof(vis));
		memset(pre,-1,sizeof(pre));
		for(int i = 0;i<3;i++)
			for(int j = 0;j<3;j++)
			{
				if((str[k]<='9' && str[k]>='0') || str[k]=='x')
				{
					if(str[k]=='x')
					{
						s.mp[i][j]=0;
						s.x=i;
						s.y=j;
					}
					else
						s.mp[i][j]=str[k]-'0';
				}
				else
					j--;
				k++;
			}
		if(!isok(s))
		{
			printf("unsolvable\n");
			continue;
		}
		s.Hash = get_hash(s);
		if(s.Hash == destination)
		{
			puts("");
			continue;
		}
		vis[s.Hash]=-2;
		s.g=0;
		s.h=get_h(s);
		bfs();
		print();
	}
}




Description



The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x



where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle: 


1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x r-> d-> r->



The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 



Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 


frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 



In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 


arrangement. 




Input



You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle 

1 2 3 
x 4 6 
7 5 8 

is described by this list: 

1 2 3 x 4 6 7 5 8 



Output



You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases. 



Sample Input



2 3 4 1 5 x 7 6 8



Sample Output



ullddrurdllurdruldr