异常变态的正常线段树。给你三种操作,三种输出方式:
1.让l~r区间的所有值加c;
2.让l~r区间的所有值乘c;
3.让l~r区间的所有值变成c;
4.让l~r区间的所有值都先求p(1~3)次方,然后求和输出。
别人都是一看题懵逼好简单操作好复杂,我就比较优秀,一看题就懵逼感觉很难不知道怎么做,我对不起这几天努力学的线段树,对不起。其实我考虑到分三种lazy数组,三种ans数组(正常大家都能想到。。。),但是我不知道数组到开2次方,3次方怎么做。再此跟初中老师道歉,大家看下面。
sum1 = a1 + a2 + a3;
sum2 = a1^2 + a2^2 + a3^2;
sum3 = a1^3 + a2^3 + a3^3;
如果每个元素都加c呢?
sum1 = a1 + a2 + a3 + 3*c;
sum2 = (a1 + c)^2 + (a2 + c) ^2 + (a3 + c)^2;
sum3 = (a1 + c)^3 + (a2 + c) ^3 + (a3 + c)^3;
真的傻,我竟然不知道怎么处理sum2,式子分解一下不就好了
sum2 = a1^2 + a2^2 + a3^2 + 2 * c * (a + b + c) + 3 * c^2;
sum2 = 上一状态的sum2 + 2 * c * 上一状态的sum1 + 3 * c^2;
sum3 = .....
每个元素乘c,这个就很简单了,大家都懂,每个元素变成c也很好操作。
这只是其中一种通俗易懂代码写起来不要命的操作,让我写代码不可能的
#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <string>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL __int64
#define eps 1e-8
#define INF INT_MAX
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int MOD = 10007;
const int maxn = 100000 + 5;
const int N = 12;
LL add[maxn << 2] , set[maxn << 2] , mul[maxn << 2];
LL sum1[maxn << 2] , sum2[maxn << 2] , sum3[maxn << 2];
void PushUp(int rt)
{
sum1[rt] = (sum1[rt << 1] + sum1[rt << 1 | 1]) % MOD;
sum2[rt] = (sum2[rt << 1] + sum2[rt << 1 | 1]) % MOD;
sum3[rt] = (sum3[rt << 1] + sum3[rt << 1 | 1]) % MOD;
}
void build(int l , int r , int rt)
{
add[rt] = set[rt] = 0;
mul[rt] = 1;
if(l == r) {
sum1[rt] = sum2[rt] = sum3[rt] = 0;
return;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUp(rt);
}
void PushDown(int rt , int len)
{
if(set[rt]) {
set[rt << 1] = set[rt << 1 | 1] = set[rt];
add[rt << 1] = add[rt << 1 | 1] = 0; //注意这个也要下放
mul[rt << 1] = mul[rt << 1 | 1] = 1;
LL tmp = ((set[rt] * set[rt]) % MOD) * set[rt] % MOD;
sum1[rt << 1] = ((len - (len >> 1)) % MOD) * (set[rt] % MOD) % MOD;
sum1[rt << 1 | 1] = ((len >> 1) % MOD) * (set[rt] % MOD) % MOD;
sum2[rt << 1] = ((len - (len >> 1)) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum2[rt << 1 | 1] = ((len >> 1) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum3[rt << 1] = ((len - (len >> 1)) % MOD) * tmp % MOD;
sum3[rt << 1 | 1] = ((len >> 1) % MOD) * tmp % MOD;
set[rt] = 0;
}
if(mul[rt] != 1) { //这个就是mul[rt] != 1 , 当时我这里没注意所以TLE了
mul[rt << 1] = (mul[rt << 1] * mul[rt]) % MOD;
mul[rt << 1 | 1] = (mul[rt << 1 | 1] * mul[rt]) % MOD;
if(add[rt << 1]) //注意这个也要下放
add[rt << 1] = (add[rt << 1] * mul[rt]) % MOD;
if(add[rt << 1 | 1])
add[rt << 1 | 1] = (add[rt << 1 | 1] * mul[rt]) % MOD;
LL tmp = (((mul[rt] * mul[rt]) % MOD * mul[rt]) % MOD);
sum1[rt << 1] = (sum1[rt << 1] * mul[rt]) % MOD;
sum1[rt << 1 | 1] = (sum1[rt << 1 | 1] * mul[rt]) % MOD;
sum2[rt << 1] = (sum2[rt << 1] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum2[rt << 1 | 1] = (sum2[rt << 1 | 1] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum3[rt << 1] = (sum3[rt << 1] % MOD) * tmp % MOD;
sum3[rt << 1 | 1] = (sum3[rt << 1 | 1] % MOD) * tmp % MOD;
mul[rt] = 1;
}
if(add[rt]) {
add[rt << 1] += add[rt]; //add是+= , mul是*=
add[rt << 1 | 1] += add[rt];
LL tmp = (add[rt] * add[rt] % MOD) * add[rt] % MOD; //注意sum3 , sum2 , sum1的先后顺序
sum3[rt << 1] = (sum3[rt << 1] + (tmp * (len - (len >> 1)) % MOD) + 3 * add[rt] * ((sum2[rt << 1] + sum1[rt << 1] * add[rt]) % MOD)) % MOD;
sum3[rt << 1 | 1] = (sum3[rt << 1 | 1] + (tmp * (len >> 1) % MOD) + 3 * add[rt] * ((sum2[rt << 1 | 1] + sum1[rt << 1 | 1] * add[rt]) % MOD)) % MOD;
sum2[rt << 1] = (sum2[rt << 1] + ((add[rt] * add[rt] % MOD) * (len - (len >> 1)) % MOD) + (2 * sum1[rt << 1] * add[rt] % MOD)) % MOD;
sum2[rt << 1 | 1] = (sum2[rt << 1 | 1] + (((add[rt] * add[rt] % MOD) * (len >> 1)) % MOD) + (2 * sum1[rt << 1 | 1] * add[rt] % MOD)) % MOD;
sum1[rt << 1] = (sum1[rt << 1] + (len - (len >> 1)) * add[rt]) % MOD;
sum1[rt << 1 | 1] = (sum1[rt << 1 | 1] + (len >> 1) * add[rt]) % MOD;
add[rt] = 0;
}
}
void update(int L , int R , int c , int ch , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(ch == 3) {
set[rt] = c;
add[rt] = 0;
mul[rt] = 1;
sum1[rt] = ((r - l + 1) * c) % MOD;
sum2[rt] = ((r - l + 1) * ((c * c) % MOD)) % MOD;
sum3[rt] = ((r - l + 1) * (((c * c) % MOD) * c % MOD)) % MOD;
} else if(ch == 2) {
mul[rt] = (mul[rt] * c) % MOD;
if(add[rt])
add[rt] = (add[rt] * c) % MOD;
sum1[rt] = (sum1[rt] * c) % MOD;
sum2[rt] = (sum2[rt] * (c * c % MOD)) % MOD;
sum3[rt] = (sum3[rt] * ((c * c % MOD) * c % MOD)) % MOD;
} else if(ch == 1) {
add[rt] += c;
LL tmp = (((c * c) % MOD * c) % MOD * (r - l + 1)) % MOD; //(r - l + 1) * c^3
sum3[rt] = (sum3[rt] + tmp + 3 * c * ((sum2[rt] + sum1[rt] * c) % MOD)) % MOD;
sum2[rt] = (sum2[rt] + (c * c % MOD * (r - l + 1) % MOD) + 2 * sum1[rt] * c) % MOD;
sum1[rt] = (sum1[rt] + (r - l + 1) * c) % MOD;
}
return;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if(L > m)
update(L , R , c , ch , rson);
else if(R <= m)
update(L , R , c , ch , lson);
else {
update(L , R , c , ch , lson);
update(L , R , c , ch , rson);
}
PushUp(rt);
}
LL query(int L , int R , int p , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(p == 1)
return sum1[rt] % MOD;
else if(p == 2)
return sum2[rt] % MOD;
else
return sum3[rt] % MOD;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if(L > m)
return query(L , R , p , rson);
else if(R <= m)
return query(L , R , p , lson);
else
return (query(L , R , p , lson) + query(L , R , p , rson)) % MOD;
}
int main()
{
int n , m;
int a , b , c , ch;
while(~scanf("%d %d" , &n , &m))
{
if(n == 0 && m == 0)
break;
build(1 , n , 1);
while(m--) {
scanf("%d %d %d %d" , &ch , &a , &b , &c);
if(ch != 4) {
update(a , b , c , ch , 1 , n , 1);
} else {
printf("%I64d\n" , query(a , b , c , 1 , n , 1));
}
}
}
return 0;
}
第二种代码就很优秀,把lazy用到极致,我们知道有元素覆盖这种操作(就是把区间内的值全部变成c),如果一个区间的值全一样,那么进行update操作会非常简单,所以你只需要把lazy一直往下传,一直传到区间全相等的时候停止。(当然,时间方面还是很可怕,不过人家ac了,ac就是真理)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define lz 2*u,l,mid
#define rz 2*u+1,mid+1,r
typedef long long lld;
const int maxn=100005;
const int mod=10007;
lld add[4*maxn], mul[4*maxn], ch[4*maxn], sum[4*maxn];
void build(int u, int l, int r)
{
mul[u]=1;
add[u]=sum[u]=0;
ch[u]=0;
if(l==r)
{
ch[u]=1;
return ;
}
int mid=(l+r)>>1;
build(lz);
build(rz);
}
void push_down(int u, int l, int r)
{
if(l==r) return ;
int mid=(l+r)>>1;
if(ch[u])
{
add[2*u]=0, mul[2*u]=1;
add[2*u+1]=0, mul[2*u+1]=1;
ch[2*u]=ch[2*u+1]=1;
sum[2*u]=sum[2*u+1]=sum[u];
ch[u]=0;
}
else
{
if(add[u])
{
if(ch[2*u]) sum[2*u]=(sum[2*u]+add[u])%mod;
else
{
push_down(lz);
add[2*u]=(add[2*u]+add[u])%mod;
}
if(ch[2*u+1]) sum[2*u+1]=(sum[2*u+1]+add[u])%mod;
else
{
push_down(rz);
add[2*u+1]=(add[2*u+1]+add[u])%mod;
}
add[u]=0;
}
if(mul[u]>1)
{
if(ch[2*u]) sum[2*u]=(sum[2*u]*mul[u])%mod;
else
{
push_down(lz);
mul[2*u]=(mul[2*u]*mul[u])%mod;
}
if(ch[2*u+1]) sum[2*u+1]=(sum[2*u+1]*mul[u])%mod;
else
{
push_down(rz);
mul[2*u+1]=(mul[2*u+1]*mul[u])%mod;
}
mul[u]=1;
}
}
}
void Update(int u, int l, int r, int tl, int tr, int c, int op)
{
if(tl<=l&&r<=tr)
{
if(op==3)
{
ch[u]=1;
mul[u]=1, add[u]=0;
sum[u]=c;
}
else
{
if(ch[u])
{
if(op==1) sum[u]=(sum[u]+c)%mod;
else sum[u]=sum[u]*c%mod;
}
else
{
push_down(u,l,r);
if(op==1) add[u]=(add[u]+c)%mod;
else mul[u]=mul[u]*c%mod;
}
}
return ;
}
push_down(u,l,r);
int mid=(l+r)>>1;
if(tr<=mid) Update(lz,tl,tr,c,op);
else if(tl>mid) Update(rz,tl,tr,c,op);
else
{
Update(lz,tl,mid,c,op);
Update(rz,mid+1,tr,c,op);
}
}
lld Query(int u, int l, int r, int tl, int tr, int p)
{
if(tl<=l&&r<=tr)
{
if(ch[u])
{
lld ans=1, tp=sum[u];
for(int i=1; i<=p; i++) ans=ans*tp%mod;
return (r-l+1)*ans%mod;
}
}
push_down(u,l,r);
int mid=(l+r)>>1;
if(tr<=mid) return Query(lz,tl,tr,p);
else if(tl>mid) return Query(rz,tl,tr,p);
else
{
lld t1=Query(lz,tl,mid,p);
lld t2=Query(rz,mid+1,tr,p);
return (t1+t2)%mod;
}
}
int main()
{
int n, m;
while(cin >> n >> m, n+m)
{
build(1,1,n);
for(int i=1; i<=m; i++)
{
int l, r, c, op;
scanf("%d%d%d%d",&op,&l,&r,&c);
if(op<=3) Update(1,1,n,l,r,c,op);
else printf("%I64d\n",Query(1,1,n,l,r,c)%mod);
}
}
return 0;
}