几何代数60 ----空间直角坐标变换
目录
- 几何代数60 ----空间直角坐标变换
- 1、空间直角坐标的*移
- \(\large\color{#70f3ff}{\boxed{\color{brown}{空间直角坐标的*移变换公式} }}\)
- 例1
- 2、空间直角坐标的旋转
- \(\large\color{#70f3ff}{\boxed{\color{brown}{空间直角坐标的旋转变换公式} }}\)
- 例2
- \(\large\color{#70f3ff}{\boxed{\color{brown}{空间直角坐标的一般变换} }}\)
- 3、空间直角坐标的伸缩
1、空间直角坐标的*移
在空间中,*行移动空间直角坐标系,称为空间直角坐标系的\(\large\color{#70f3ff}{\boxed{\color{green}{*移}}}\) ,简称 \(\large\color{#70f3ff}{\boxed{\color{green}{移轴}}}\)
特点:
- 坐标轴的方向保持不变;
- 原点位置发生改变 .
𝑂𝑥𝑦𝑧 *移得到 𝑂′𝑥′𝑦′ 𝑧′
\(\large\color{#70f3ff}{\boxed{\color{brown}{空间直角坐标的*移变换公式} }}\)
设新坐标 \(𝑂′𝑥′𝑦′𝑧′\) 的坐标原点\(𝑂′\) 在旧坐标系\(𝑂𝑥𝑦𝑧\)下的坐标为 \(𝑂' (𝑥_0, 𝑦_0, 𝑧_0)\)
点 \(𝑀\)在旧坐标系 \(𝑂𝑥𝑦𝑧\)下的坐标为\(𝑀 (𝑥, 𝑦,z)\) , 在新坐标系 \(𝑂′𝑥′𝑦′𝑧′\)下的坐标为 \(𝑀 (𝑥′, 𝑦′,𝑧′) .\)
则
\[\begin{aligned}\large\overrightarrow{𝑂𝑂′} = 𝑥_0𝒊 + 𝑦_0𝒋 + 𝑧_0𝒌 ,~~~
\overrightarrow{𝑂M} = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 ,~~~
\overrightarrow{𝑂'M} = 𝑥’𝒊 + 𝑦'𝒋 + 𝑧'𝒌 ,
\end{aligned}
\]
故
\[\large\begin{aligned}\overrightarrow{𝑂M} &= \overrightarrow{𝑂𝑂′} + \overrightarrow{𝑂′𝑀} = 𝑥_0𝒊 + 𝑦_0𝒋 + 𝑧_0𝒌 + 𝑥′𝒊 + 𝑦′𝒋 + 𝑧′𝒌 ,\\
&=(𝑥′ + 𝑥_0) 𝒊 + (𝑦′ + 𝑦_0) 𝒋 + (𝑧′ + 𝑧_0) 𝒌
\end{aligned}
\]
\(\large\color{magenta}{移轴公式:}\)
\[\begin{cases} x= 𝑥′ + 𝑥_0\\ y= y′ + y_0 \\𝑧 = 𝑧′ + 𝑧_0 . \end{cases}\]
代数表示:
\[\Rightarrow \begin{pmatrix}x\\
y\\
z
\end{pmatrix}=\begin{pmatrix}
x'\\
y'\\
z'
\end{pmatrix}+\begin{pmatrix}
x_0\\
y_0\\
z_0
\end{pmatrix}
\]
\(\large\color{magenta}{移轴逆变换公式:}\)
\[\begin{cases} 𝑥′ = x- 𝑥_0\\ y′= y- y_0 \\𝑧′ = 𝑧 − 𝑧_0 . \end{cases}\]
\[\Rightarrow \begin{pmatrix}x'\\
y'\\
z'
\end{pmatrix}=\begin{pmatrix}
x\\
y\\
z
\end{pmatrix}-\begin{pmatrix}
x_0\\
y_0\\
z_0
\end{pmatrix}
\]
【注】 𝑂 在新坐标系 \(𝑂′𝑥′𝑦′𝑧′\)的坐标为 \((−𝑥_0, −𝑦_0, −𝑧_0)\).
例1
用移轴化简方程 \(𝐶: 9𝑥^2 + 4𝑦^2 + 36𝑧^2 − 36𝑥 + 8 𝑦 + 4 = 0\), 并画出它的图形 .
【解】 配方整理得\(9(x -2)^2+4(y +1)^2+36z^2=36.\)
令\(\begin{cases} x= 𝑥′ + 2\\ y= y′ -1 \\𝑧 = 𝑧′ . \end{cases}\), 或者\(\begin{cases} 𝑥′ = x-2\\ y′= y+ 1 \\𝑧′ = 𝑧 . \end{cases}\)
得\(C:\frac{x'^2}{4}+\frac{y'^2}{9}+z'^2=1\).它表示一个椭球面.
【注】移轴不改变曲面的形状.
𝑂′ (2, −1,0)
2、空间直角坐标的旋转
在空间中,保持原点不动,将直角坐标系旋转 ,称为坐标系的\(\large\color{#70f3ff}{\boxed{\color{green}{旋转变换}}}\) ,简称\(\large\color{#70f3ff}{\boxed{\color{green}{转轴}}}\)
特点:
- 坐标原点位置不变;
- 坐标轴方向发生改变(保持相互垂直和右手系).
问题:转轴后,空间中的点的坐标如何改变?
\(\large\color{#70f3ff}{\boxed{\color{brown}{空间直角坐标的旋转变换公式} }}\)
设新坐标系 \(𝑂′𝑥′𝑦′𝑧′\) 下的基向量为 \(𝒊′,𝒋′, 𝒌′\).
\[{\begin{cases} i′= cos ~\alpha _1 i + cos ~\beta_1 j + cos~ \gamma _1 k , \\ j′= cos ~\alpha _2 i + cos ~\beta _2 j + cos~ \gamma _2 k , \\
k′= cos ~\alpha _3 i + cos ~\beta _3 j + cos~ \gamma _3 k , \\
\end{cases}}
\]
代数表示:
\[\Rightarrow \begin{pmatrix} 𝒊′\\
𝒋′\\
𝒌′
\end{pmatrix}=\begin{bmatrix} cos ~\alpha_1 &cos ~\beta_1 &cos~ \gamma_1 \\
cos ~\alpha_2 &cos ~\beta_2 &cos~ \gamma_2 \\
cos ~\alpha_3 &cos ~\beta_3 &cos~ \gamma_3 \end{bmatrix}\begin{pmatrix}
𝒊\\
𝒋\\
𝒌
\end{pmatrix}
\large\begin{aligned}
\bbox[lime]{行向量为单位正交向量}
\end{aligned}
\]
设点 $𝑀 $在旧坐标系 \(𝑂𝑥𝑦𝑧\)下的坐标为\(𝑀 (𝑥, 𝑦,z)\) , 在新坐标系 \(𝑂′𝑥′𝑦′𝑧′\)下的坐标为 \(𝑀 (𝑥′, 𝑦′,𝑧′) .\)
\(\large\overrightarrow{𝑂M} = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 ,\overrightarrow{𝑂'M} = 𝑥’𝒊 ’+ 𝑦’𝒋’ + 𝑧’𝒌’\)
故
\[\begin{aligned}\overrightarrow{𝑂M}& =(x,y,z)\begin{pmatrix}
𝒊\\
𝒋\\
𝒌
\end{pmatrix} =(x',y',z')\begin{pmatrix}
𝒊'\\
𝒋'\\
𝒌'
\end{pmatrix} \\ &=(x',y',z')
\begin{bmatrix} &cos ~𝛼_1 &cos ~𝛽_1 &cos~ 𝛾_1 \\
&cos ~𝛼_2 &cos ~𝛽_2 &cos~ 𝛾_2 \\
&cos ~𝛼_3 &cos ~𝛽_3 &cos~ 𝛾_3 \end{bmatrix}\begin{pmatrix}
𝒊\\
𝒋\\
𝒌
\end{pmatrix}
\end{aligned}
\]
\[(x,y,z) =(x',y',z')\begin{bmatrix} &cos ~𝛼_1 &cos ~𝛽_1 &cos~ 𝛾_1 \\
&cos ~𝛼_2 &cos ~𝛽_2 &cos~ 𝛾_2 \\
&cos ~𝛼_3 &cos ~𝛽_3 &cos~ 𝛾_3 \end{bmatrix}
\]
转置
\(\Huge\color{magenta}\Rightarrow\)
\[\bbox[pink]{\begin{pmatrix} x\\
y\\
z
\end{pmatrix}=\begin{bmatrix} &cos ~𝛼_1 &cos ~𝛼_2 &cos ~𝛼_3 \\
&cos ~𝛽_1 &cos ~𝛽_2 &cos ~𝛽_3 \\
& cos~ 𝛾_1 & cos~ 𝛾_2 &cos~ 𝛾_3 \end{bmatrix}\begin{pmatrix}
x'\\
y'\\
z'
\end{pmatrix} =\begin{bmatrix} &r_{11} &r_{12} &r_{13} \\
&r_{21} &r_{22} &r_{23} \\
&r_{31} &r_{32} &r_{33} \end{bmatrix}\begin{pmatrix}
x'\\
y'\\
z'
\end{pmatrix} }
\]
其中,列向量为单位正交向量。
\[r_{1j}^2 + r_{2j}^2+ r_{3j}^2= 1 , r_{1i}r_{1j} +r_{2i} r_{2j}+ r_{3i}r_{3j}= 0, 𝑖,𝑗 = 1,2,3; 𝑗 ≠ 𝑖 .
\]
\(\large\color{magenta}{转轴公式:}\)
\[\bbox[pink]{\begin{pmatrix} x\\
y\\
z
\end{pmatrix}=\begin{bmatrix} &r_{11} &r_{12} &r_{13} \\
&r_{21} &r_{22} &r_{23} \\
&r_{31} &r_{32} &r_{33} \end{bmatrix}\begin{pmatrix}
x'\\
y'\\
z'
\end{pmatrix} }
\]
\[R=\begin{bmatrix} &r_{11} &r_{12} &r_{13} \\ &r_{21} &r_{22} &r_{23} \\
&r_{31} &r_{32} &r_{33} \end{bmatrix}\color{magenta}{——转轴矩阵}
\]
性质
- (1)矩阵\(R\)的列向量是单位正交向量,即\(R\)是正交矩阵.
- (2)\(RR^T =I\)
- (3)\(R^{-1} = R^T\).
- (4)\(|R|=1\).
\(\large\color{orange}{转轴矩阵的行列式为1 }\)
因为\({\begin{cases} 𝒊′= cos ~𝛼_1 𝒊 + cos ~𝛽_1 𝒋 + cos~ 𝛾_1 𝒌 , \\ 𝒋′= cos ~𝛼_2 𝒊 + cos ~𝛽_2 𝒋 + cos~ 𝛾_2 𝒌 , \\ 𝒌′= cos ~𝛼_3 𝒊 + cos ~𝛽_3 𝒋 + cos~ 𝛾_3 𝒌 , \\ \end{cases}}\)
\(|R^T|=\begin{vmatrix} &cos ~𝛼_1 &cos ~𝛽_1 &cos~ 𝛾_1 \\ &cos ~𝛼_2 &cos ~𝛽_2 &cos~ 𝛾_2 \\ &cos ~𝛼_3 &cos ~𝛽_3 &cos~ 𝛾_3 \end{vmatrix} = (𝒊′𝒋′𝒌′) = 1 ,\)
所以 \(|R|=1\).
【注】(1)转轴矩阵是行列式为1的正交矩阵
(2)正交矩阵未必为转轴矩阵
\(\large\color{orange}{空间直角坐标的旋转变换公式}\)
\[\left\{\begin{array}{l}x=r_{11} x^{\prime}+r_{12} y^{\prime}+r_{13} z^{\prime} \\ y=r_{21} x^{\prime}+r_{22} y^{\prime}+r_{23} z^{\prime}
\\ z=r_{31} x^{\prime}+r_{32} y^{\prime}+r_{33} z^{\prime}\end{array}
\quad\Leftarrow \quad
\left(\begin{array}{l}x \\ y \\ z\end{array}\right)
=\left[\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22}
& r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right]\left(\begin{array}
{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)\right.
\]
\(\longrightarrow r_{11} x+r_{21} y+r_{31} z=\left(r_{11}^{2}+r_{21}^{2}+r_{31}^{2}\right) x^{\prime}\)
\(+\left(r_{11} r_{12}+r_{21} r_{22}+r_{31} r_{32}\right) y^{\prime}+\left(r_{11} r_{13}+r_{21} r_{23}+r_{31} r_{33}\right) z^{\prime}=x^{\prime}\)
可以得到:
\[\begin{array}{l}x^{\prime}=r_{11} x+r_{21} y+r_{31} z \\
y^{\prime}=r_{12} x+r_{22} y+r_{32} z \\
z^{\prime}=r_{13} x+r_{23} y+r_{33} z
\end{array} \quad \longrightarrow \quad\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left[\begin{array}{lll}
r_{11} & r_{21} & r_{31} \\
r_{12} & r_{22} & r_{32} \\
r_{13} & r_{23} & r_{33}
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\]
\(\large\color{magenta}{转轴逆变换公式:}\)
\[\bbox[pink]{\begin{pmatrix} x'\\
y'\\
z'
\end{pmatrix} =\begin{bmatrix} &r_{11} & r_{21} &r_{31} \\
&r_{12} &r_{22} & r_{32} \\
& r_{13} &r_{23} &r_{33} \end{bmatrix}\begin{pmatrix}
x\\
y\\
z
\end{pmatrix} }
\]
\[转轴公式: 𝒙 = 𝑅 𝒙′\\𝑅^T 𝒙 = 𝑅^T𝑅𝒙′ = 𝒙′.\\ 转轴逆变换公式: 𝒙′ = 𝑅^T 𝒙.\\ \]
例2
证明:对于任意旋转变换, 多项式 \(F(x, y, z)=x^{2}+y^{2}+z^{2}-1\)
变成 \(F\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-1\)
【证1】 由转轴公式
\(\quad\left\{\begin{array}{l}x=r_{11} x^{\prime}+r_{12} y^{\prime}+r_{13} z^{\prime} \\ y=r_{21} x^{\prime}+r_{22} y^{\prime}+r_{23} z^{\prime}, \quad \text { 代入化简得 } \\ z=r_{31} x^{\prime}+r_{32} y^{\prime}+r_{33} z^{\prime}\end{array}\right.\)
\(F(x, y, z)=\left(r_{11} x^{\prime}+r_{12} y^{\prime}+r_{13} z^{\prime}\right)^{2}+\left(r_{21} x^{\prime}+r_{22} y^{\prime}+r_{23} z^{\prime}\right)^{2}\)
\(+\left(r_{31} x^{\prime}+r_{32} y^{\prime}+r_{33} z^{\prime}\right)^{2}-1=\left(r_{11}^{2}+r_{21}^{2}+r_{31}^{2}\right) x^{\prime 2}+\left(r_{12}^{2}+r_{22}^{2}+r_{32}^{2}\right) y^{\prime 2}\)
\(+\left(r_{13}^{2}+r_{23}^{2}+r_{33}^{2}\right) z^{\prime 2}+\left(r_{11} r_{12}+r_{21} r_{22}+r_{31} r_{32}\right) x^{\prime} y^{\prime}\)
\(+\left(r_{12} r_{13}+r_{22} r_{23}+r_{32} r_{33}\right) y^{\prime} z^{\prime}+\left(r_{11} r_{13}+r_{21} r_{23}+r_{31} r_{33}\right) z^{\prime} x^{\prime}-1\)故 \(\quad F(x, y, z)=x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-1 .\)
【注 】球面方程 \(S: x^{2}+y^{2}+z^{2}=1\)
【证2】
\[\quad F(x, y, z)=(x, y, z)\left(\begin{array}{l}x \\
y \\
z
\end{array}\right)-1=x^{\mathrm{T}} x-1
\]
对于旋转变换 \(x=R x^{\prime},\)
\[\begin{aligned}F(x, y, z) &=\left(R x^{\prime}\right)^{\mathrm{T}}\left(R x^{\prime}\right)-1=x^{\prime \mathrm{T}} R^{\mathrm{T}} R \boldsymbol{x}^{\prime}=\boldsymbol{x}^{\prime \mathrm{T}} \boldsymbol{x}^{\prime}-1 \\
&=x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-1
\end{aligned}
\]
\(\large\color{#70f3ff}{\boxed{\color{brown}{空间直角坐标的一般变换} }}\)
从几何上容易理解,移轴和转轴都不改变二次曲面的图形
设新坐标 \(𝑂′𝑥′𝑦′𝑧′\) 的坐标原点\(𝑂′\) 在旧坐标系\(𝑂𝑥𝑦𝑧\)下的坐标为 \(𝑂′ (𝑥_0, 𝑦_0, 𝑧_0)\)
点 $𝑀 $在旧坐标系 \(𝑂𝑥𝑦𝑧\)下的坐标为\(𝑀 (𝑥, 𝑦,z)\) , 在新坐标系 \(𝑂′𝑥′𝑦′𝑧′\)下的坐标为 \(𝑀 (𝑥′, 𝑦′,𝑧′) .\)
\(\large\overrightarrow{𝑂O'} = 𝑥_0𝒊 + 𝑦_0𝒋 + 𝑧_0𝒌 ,~~~ \overrightarrow{𝑂M} = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 ,~~~ \overrightarrow{𝑂'M} = 𝑥’𝒊 ’+ 𝑦’𝒋’ + 𝑧’𝒌’\)
\(\Huge\color{magenta}\Rightarrow\) \(\overrightarrow{𝑂M}=\overrightarrow{𝑂O'} +\overrightarrow{𝑂'M}=𝑥_0𝒊 + 𝑦_0𝒋 + 𝑧_0𝒌 + 𝑥’𝒊 ’+ 𝑦’𝒋’ + 𝑧’𝒌’\)
由\({\begin{cases} 𝒊′= cos ~𝛼_1 𝒊 + cos ~𝛽_1 𝒋 + cos~ 𝛾_1 𝒌 , \\ 𝒋′= cos ~𝛼_2 𝒊 + cos ~𝛽_2 𝒋 + cos~ 𝛾_2 𝒌 , \\
𝒌′= cos ~𝛼_3 𝒊 + cos ~𝛽_3 𝒋 + cos~ 𝛾_3 𝒌 , \\
\end{cases}}\)
\[\begin{aligned}\overrightarrow{𝑂M}& =(x,y,z)\begin{pmatrix}
𝒊\\
𝒋\\
𝒌
\end{pmatrix} =(x_0,y_0,z_0)\begin{pmatrix}
𝒊\\
𝒋\\
𝒌
\end{pmatrix}+(x',y',z')\begin{pmatrix}
𝒊'\\
𝒋'\\
𝒌'
\end{pmatrix} \\ &=(x_0,y_0,z_0)\begin{pmatrix}
𝒊\\
𝒋\\
𝒌
\end{pmatrix}+(x',y',z')
\begin{bmatrix} cos ~𝛼_1 &cos ~𝛽_1 &cos~ 𝛾_1 \\
cos ~𝛼_2 &cos ~𝛽_2 &cos~ 𝛾_2 \\
cos ~𝛼_3 &cos ~𝛽_3 &cos~ 𝛾_3 \end{bmatrix}\begin{pmatrix}
𝒊\\
𝒋\\
𝒌
\end{pmatrix}
\end{aligned}
\]
\(\large\color{magenta}{空间直角坐标的一般变换公式}\)
\[{\begin{cases} x= x'~ cos ~𝛼_1 + y'~cos ~𝛼_2 + z'~cos ~𝛼_3 +x_0, \\ y= x'~cos ~𝛽_1 +y'~cos ~𝛽_2 + z'~cos ~𝛽_3 +y_0, \\
z = x'~cos~ 𝛾_1 + y'~cos~ 𝛾_2 + z'~cos~ 𝛾_3 +z_0. \\
\end{cases}}
\]
【注】先移轴再转轴,还是先转轴再移轴,一般变换公式最终形式都一样 .
\(\large\color{magenta}{空间直角坐标的一般变换的逆变换公式}\)
\[{\begin{cases} x′= (x-x_0)cos ~𝛼_1 + (y-y_0)cos ~𝛽_1 + (z-z_0)cos~ 𝛾_1 , \\ y′=(x-x_0) cos ~𝛼_2 +(y-y_0) cos ~𝛽_2 + (z-z_0)cos~ 𝛾_2 , \\
z′= (x-x_0)cos ~𝛼_3 + (y-y_0) cos ~𝛽_3 +(z-z_0) cos~ 𝛾_3 , \\
\end{cases}}
\]
3、空间直角坐标的伸缩
称变换\(\begin{cases} x= a𝑥′ \\ y= by′ \\𝑧 =c 𝑧′ . \end{cases}\)为空间直角坐标系的伸缩(其中 𝑎𝑏𝑐 ≠ 0).
即 \(\begin{pmatrix} x\\ y\\ z \end{pmatrix} =\begin{bmatrix} a & 0 &0 \\ 0 &b & 0 \\ 0 &0 &c \end{bmatrix}\begin{pmatrix} x'\\ y'\\ z' \end{pmatrix}\)
【注】伸缩改变二次曲面的形状,但不改变其类型 .
利用空间直角坐标系的\(\large\color{#70f3ff}{\boxed{\color{green}{伸缩变换}}}\)
例如,椭球面\(\large S:\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1,(𝑎, 𝑏, 𝑐 > 0)\) 在伸缩变换\(\begin{cases} x= a𝑥′ \\ y= by′ \\𝑧 =c 𝑧′ . \end{cases}\) 下,变成最简形式\(𝑆′: 𝑥′^2 + 𝑦′^2 + 𝑧′^2 = 1\),它是一个单位球面 .
这样,我们就可以把椭球面看作是单位球面的一个伸缩