Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
给你一个n个整数组成的序列,每次只能交换相邻的两个元素,问你最少要进行多少次交换才能使得整个整数序列上升有序。
假设当前处理第i个数,我们只需要计算出i的逆序加到总和ans上即可.i的逆序为:在i之前的那些比i大的数的个数.所以从0到n-1一一扫描,令x[v]=1,表示之前的扫描已经有一个值为v的数被扫描到了.所以当我们处理第i个数a[i]的时候,它的逆序为:x[max]+x[max-1]+…+x[a[i]+1]的值( 即为sum(max)-(x[0]+x[1]+…+x[a[i]-1]) ),且我们需要令x[a[i]]++.
最终可以算出逆序总值ans.
但是此题的max高达10亿-1,我们不可能去开一个这么大的数组,但是数只有50W个,我们可以开个50W的数组.,而且我们需要的逆序数仅仅相关与数之间的相对大小,比如3,888,1000000 这三个数的序列我们完全可以用1,2,3这三个数的序列代替,他们的逆序数是一样的.
所以我们将先对读入的数组离散化处理,使得他们的值集中,但是不影响他们之间的相对大小.
然后再用树状数组即可.
AC代码: