图 4.1

《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_matplotlib(Python)


《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_逆序_02《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_matplotlib(Python)_03

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

# 设置matplotlib正常显示中文和负号
matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus']=False # 正常显示负号


x=np.linspace(-2*np.pi, 2*np.pi, 200)
y=np.sin(x)
y1=np.cos(x)


plt.plot(x,y, label=r"$\sin(x)$")
plt.plot(x,y1,label=r"$\cos(x)$")


plt.legend(loc="lower left")

plt.title("正弦函数和余弦函数的折线图")
plt.show()

View Code



--------------------------------------------------------------------------


图 4.2

 《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_逆序_04

《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_逆序_02《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_matplotlib(Python)_03

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

# 设置matplotlib正常显示中文和负号
matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus']=False # 正常显示负号


x=np.arange(0, 2.1, 0.1)
y=np.power(x, 3)
y1=np.power(x,2)
y2=np.power(x, 1)

plt.plot(x, y, ls='-', lw=2, label='$x^{3}$')
plt.plot(x, y1, ls='-', lw=2, label='$x^{2}$', c='r')
plt.plot(x, y2, ls='-', lw=2, label='$x^{1}$', c='y')

plt.legend(loc='upper left', bbox_to_anchor=(0.05, 0.95), ncol=3,
title="power function", shadow=True, fancybox=True)

plt.show()

View Code


--------------------------------------------------------------------------


图 4.3

《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_显示中文_07

《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_逆序_02《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_matplotlib(Python)_03

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

# 设置matplotlib正常显示中文和负号
matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus']=False # 正常显示负号

x=np.linspace(-2, 2, 1000)
y=np.exp(x)

plt.plot(x, y, ls="-", lw=2, color='g')

plt.title("center demo")

plt.title("Left Demo", loc="left", fontdict={"size":"xx-large","color":"r",
"family":"Times New Roman"})

plt.title("right demo", loc="right", family="Comic Sans MS", size=20, style="oblique",
color="c")

plt.show()

View Code


--------------------------------------------------------------------------


图 4.4

 《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_matplotlib(Python)_10


《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_逆序_02《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_matplotlib(Python)_03

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

# 设置matplotlib正常显示中文和负号
matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus']=False # 正常显示负号

elements=["面粉", "砂糖", "奶油", "草莓酱", "坚果"]

weight=[40, 15, 20, 10, 15]

colors=["#1b9e77", "#d95f02", "#7570b3", "#66a61e", "#e6ab02"]

wedges, texts, autotexts=plt.pie(weight, autopct="%3.1f%%", textprops=dict(color="w"),
colors=colors)

plt.legend(wedges, elements, fontsize=12, title="配料表", loc="center left",
bbox_to_anchor=(0.91, 0, 0.3, 1))

#调整百分比字体类型和大小
plt.setp(autotexts, size=15, weight="bold")

#调整标签字体类型和大小
# plt.setp(texts, size=32)

plt.title("果酱面包配料比例表")

plt.show()

View Code


--------------------------------------------------------------------------


图 4.5

 《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_ico_13



《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_逆序_02《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_matplotlib(Python)_03

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

# 设置matplotlib正常显示中文和负号
matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus']=False # 正常显示负号

x=np.linspace(-2*np.pi, 2*np.pi, 200)
y=np.sin(x)


plt.subplot(211)
plt.plot(x, y)


plt.subplot(212)
plt.xlim(-2*np.pi, 2*np.pi)
plt.xticks(np.pi*np.arange(-4, 5)/2,
[r"$-2\pi$", r"$-3\pi/2$", r"$-2\pi$", r"$-\pi$", r"$0$",
r"$\pi/2$", r"$\pi$", r"$3\pi/2$", r"$2\pi$", ])
plt.plot(x, y)

plt.show()

View Code


--------------------------------------------------------------------------


图 4.6

 《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_逆序_16


《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_逆序_02《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_matplotlib(Python)_03

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

# 设置matplotlib正常显示中文和负号
matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus']=False # 正常显示负号


time=np.arange(1, 11, 0.5)
machinePower=np.power(time, 2)+0.7

plt.plot(time, machinePower, linestyle="-", linewidth=2, color="r")

#逆序设置坐标轴刻度标签
plt.xlim(10, 1)

plt.xlabel("使用年限")
plt.ylabel("机器功率")

plt.title("机器损耗曲线")

plt.grid(ls=":", lw=1, color="gray", alpha=0.5)

plt.show()

View Code


--------------------------------------------------------------------------


图 4.7

《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_matplotlib(Python)_19

《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_逆序_02《Python数据可视化之matplotlib实践》     源码 第一篇 入门 第四章_matplotlib(Python)_03

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

# 设置matplotlib正常显示中文和负号
matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文
matplotlib.rcParams['axes.unicode_minus']=False # 正常显示负号

labels=["A难度水平", "B难度水平", "C难度水平", "D难度水平"]

students=[0.35, 0.15, 0.20, 0.30]

explode=(0.1, 0.1, 0.1, 0.1)

colors=["#377eb8", "#e41a1c", "#4daf4a", "#984ea3"]


plt.pie(students, explode=explode, labels=labels, autopct="%1.1f%%", startangle=45,
shadow=True, colors=colors)



colLabels=["A难度水平", "B难度水平", "C难度水平", "D难度水平"]
rowLabels=["学生选择试卷人数"]

studentValues=[[350, 150, 200, 300]]
colColors=["#377eb8", "#e41a1c", "#4daf4a", "#984ea3"]

plt.table(cellText=studentValues, cellLoc="center", colWidths=[0.25]*4,
colLabels=colLabels, colColours=colColors, rowLabels=rowLabels,
rowLoc="center", colLoc="center", loc="bottom", rowColours='r')

plt.title("选择不同难度测试试卷的学生占比")
plt.show()

View Code



--------------------------------------------------------------------------