之前的归并排序称为自顶向下,将一个大的数组一步步的拆分为小的区间,分别进行排序,最后再合并
也可以将数组的元素拆分为n个数组,第一次比较只有一个元素的两个分区间,第二次再比较两元素的分区间,第三次比较四个元素...
这种从小区间组合成大数组的方式,称为自底向上排序(Bottom to Up,这个过程不会使用到递归)
import java.util.Arrays;
public class Algorithm {
public static void main(String[] args) {
Integer[] arr = {6,6,3,2,4,7};
MergeSort.sortBU(arr);
System.out.println(Arrays.toString(arr));
}
}
class MergeSort {
private MergeSort(){}
public static<E extends Comparable<E>> void sortBU(E[] arr){
E[] temp = Arrays.copyOf(arr, arr.length);
/**
* 遍历要合并的子区间长度,每次长度翻倍
*/
for (int size = 1; size < arr.length; size *= 2) {
/**
* 遍历两个子区间的起始位置,每次相比上次偏移了2倍长度
* 两个子区间为arr[i, i + size - 1]和arr[i + size, i + size + size - 1]
* 注意:数组元素个数不一定为2的整数幂,即最后得到的两个分区间元素个数可能不同,因此i + size + size - 1最终是有可能越界的,需要和数组长度二者来取最小值
*/
for (int i = 0; i + size < arr.length; i = i + 2 * size) {
if (arr[i + size - 1].compareTo(arr[i + size]) > 0) {
mergeBU(arr, i, i + size - 1, Math.min(arr.length - 1, i + 2 * size - 1), temp);
}
}
}
}
public static<E extends Comparable<E>> void mergeBU(E[] arr, int left, int mid, int right, E[] temp) {
int i = left;
int j = mid + 1;
System.arraycopy(arr, left, temp, left, right - left + 1);
for (int n = left; n < right + 1; n++) {
if (i == mid + 1){
arr[n] = temp[j];
j++;
}
else if (j == right + 1) {
arr[n] = temp[i];
i++;
}
else if (temp[i].compareTo(temp[j]) <= 0) {
arr[n] = temp[i];
i++;
}
else{
arr[n] = temp[j];
j++;
}
}
}
}
使用插入排序法优化
在子区间长度小于16的时候,用插入排序法来实现
import java.util.Arrays;
import java.util.Random;
public class Algorithm {
public static void main(String[] args) {
Integer[] testScale = {10000, 500000};
for (Integer n : testScale) {
Integer[] randomArr = ArrayGenerator.generatorRandomArray(n, n);
Integer[] sortedArr = ArrayGenerator.generatorSortedArray(n, n);
Integer[] arr1 = Arrays.copyOf(randomArr, randomArr.length);
Integer[] arr3 = Arrays.copyOf(randomArr, randomArr.length);
Integer[] arr2 = Arrays.copyOf(sortedArr, sortedArr.length);
Integer[] arr4 = Arrays.copyOf(sortedArr, sortedArr.length);
System.out.println("测试随机数组排序性能");
System.out.println();
Verify.testTime("sortBU", arr1);
Verify.testTime("sortBU1", arr3);
System.out.println();
System.out.println("测试有序数组排序性能");
System.out.println();
Verify.testTime("sortBU", arr2);
Verify.testTime("sortBU1", arr4);
System.out.println();
}
}
}
class MergeSort {
private MergeSort() {
}
public static <E extends Comparable<E>> void sortBU(E[] arr) {
E[] temp = Arrays.copyOf(arr, arr.length);
for (int size = 1; size < arr.length; size *= 2) {
for (int i = 0; i + size < arr.length; i = i + 2 * size) {
if (arr[i + size - 1].compareTo(arr[i + size]) > 0) {
mergeBU(arr, i, i + size - 1, Math.min(arr.length - 1, i + 2 * size - 1), temp);
}
}
}
}
/**
* 将数组分为长度为16的子区间,用插入排序法实现排序
* 然后从长度16开始,用归并排序法进行合并
*/
public static <E extends Comparable<E>> void sortBU1(E[] arr) {
E[] temp = Arrays.copyOf(arr, arr.length);
for (int i = 0; i < arr.length; i += 16){
InsertionSort.sort(arr, i, Math.min(i + 15, arr.length - 1));
}
for (int size = 16; size < arr.length; size *= 2) {
for (int i = 0; i + size < arr.length; i = i + 2 * size) {
if (arr[i + size - 1].compareTo(arr[i + size]) > 0) {
mergeBU(arr, i, i + size - 1, Math.min(arr.length - 1, i + 2 * size - 1), temp);
}
}
}
}
public static <E extends Comparable<E>> void mergeBU(E[] arr, int left, int mid, int right, E[] temp) {
int i = left;
int j = mid + 1;
System.arraycopy(arr, left, temp, left, right - left + 1);
for (int n = left; n < right + 1; n++) {
if (i == mid + 1) {
arr[n] = temp[j];
j++;
} else if (j == right + 1) {
arr[n] = temp[i];
i++;
} else if (temp[i].compareTo(temp[j]) <= 0) {
arr[n] = temp[i];
i++;
} else {
arr[n] = temp[j];
j++;
}
}
}
}
class InsertionSort {
private InsertionSort() {}
public static <E extends Comparable> void sort(E[] arr, int left, int right) {
for (int i = left + 1; i < right + 1; i++) {
E tem = arr[i];
int j;
for (j = i; j > left && tem.compareTo(arr[j - 1]) < 0; j--) {
arr[j] = arr[j - 1];
}
arr[j] = tem;
}
}
}
class ArrayGenerator {
private ArrayGenerator (){}
public static Integer[] generatorRandomArray (Integer n, Integer maxBound){
Integer[] arr = new Integer[n];
Random random = new Random();
for (int i = 0; i < n; i++) {
arr[i] = random.nextInt(maxBound);
}
return arr;
}
public static Integer[] generatorSortedArray (Integer n, Integer maxBound){
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++) {
arr[i] = i;
}
return arr;
}
}
class Verify {
private Verify (){}
public static<E extends Comparable<E>> boolean isSorted(E[] arr){
for (int i = 0; i < arr.length - 1; i++) {
if (arr[i].compareTo(arr[i + 1]) > 0) {
return false;
}
}
return true;
}
public static<E extends Comparable<E>> void testTime(String AlgorithmName, E[] arr) {
long startTime = System.nanoTime();
if (AlgorithmName.equals("sortBU")) {
MergeSort.sortBU(arr);
}
if (AlgorithmName.equals("sortBU1")) {
MergeSort.sortBU1(arr);
}
long endTime = System.nanoTime();
if (!Verify.isSorted(arr)){
throw new RuntimeException(AlgorithmName + "算法排序失败!");
}
System.out.println(String.format("%s算法,测试用例为%d,执行时间:%f秒", AlgorithmName, arr.length, (endTime - startTime) / 1000000000.0));
}
}
自顶向下和自底向上性能比较
import java.util.Arrays;
import java.util.Random;
public class Algorithm {
public static void main(String[] args) {
Integer[] testScale = {10000, 500000};
for (Integer n : testScale) {
Integer[] randomArr = ArrayGenerator.generatorRandomArray(n, n);
Integer[] sortedArr = ArrayGenerator.generatorSortedArray(n, n);
Integer[] arr1 = Arrays.copyOf(randomArr, randomArr.length);
Integer[] arr3 = Arrays.copyOf(randomArr, randomArr.length);
Integer[] arr5 = Arrays.copyOf(randomArr, randomArr.length);
Integer[] arr2 = Arrays.copyOf(sortedArr, sortedArr.length);
Integer[] arr4 = Arrays.copyOf(sortedArr, sortedArr.length);
Integer[] arr6 = Arrays.copyOf(sortedArr, sortedArr.length);
System.out.println("测试随机数组排序性能");
System.out.println();
Verify.testTime("sortOptimised1", arr1);
Verify.testTime("sortOptimised2", arr3);
Verify.testTime("sortBU", arr5);
System.out.println();
System.out.println("测试有序数组排序性能");
System.out.println();
Verify.testTime("sortOptimised1", arr2);
Verify.testTime("sortOptimised2", arr4);
Verify.testTime("sortBU", arr6);
System.out.println();
}
}
}
class MergeSort {
private MergeSort(){}
/**
* 优化一:有序数组优化,合并前先判断一下是否需要合并
*/
public static<E extends Comparable<E>> void sortOptimised1(E[] arr){
sortOptimised1(arr, 0, arr.length - 1);
}
private static<E extends Comparable<E>> void sortOptimised1(E[] arr, int left, int right){
if (left >= right){
return;
}
int mid = left + (right - left) / 2;
sortOptimised1(arr, left, mid);
sortOptimised1(arr, mid + 1, right);
if (arr[mid].compareTo(arr[mid + 1]) > 0) {
merge(arr, left, mid, right);
}
}
/**
* 优化三:内存操作优化
*/
public static<E extends Comparable<E>> void sortOptimised2(E[] arr){
/**
* 提前将arr数组保存一个副本,这样就不用每次调用merge()方法,都重新开辟空间新建一个数组了
*/
E[] temp = Arrays.copyOf(arr, arr.length);
sortOptimised2(arr, 0, arr.length - 1, temp);
}
private static<E extends Comparable<E>> void sortOptimised2(E[] arr, int left, int right, E[] temp){
if (left >= right){
return;
}
int mid = left + (right - left) / 2;
sortOptimised2(arr, left, mid, temp);
sortOptimised2(arr, mid + 1, right, temp);
if (arr[mid].compareTo(arr[mid + 1]) > 0) {
mergeOptimised(arr, left, mid, right, temp);
}
}
/**
* 自底向上归并排序法
*/
public static<E extends Comparable<E>> void sortBU(E[] arr){
E[] temp = Arrays.copyOf(arr, arr.length);
for (int size = 1; size < arr.length; size *= 2) {
for (int i = 0; i + size < arr.length; i = i + 2 * size) {
if (arr[i + size - 1].compareTo(arr[i + size]) > 0) {
mergeBU(arr, i, i + size - 1, Math.min(arr.length - 1, i + 2 * size - 1), temp);
}
}
}
}
public static<E extends Comparable<E>> void mergeBU(E[] arr, int left, int mid, int right, E[] temp) {
int i = left;
int j = mid + 1;
System.arraycopy(arr, left, temp, left, right - left + 1);
for (int n = left; n < right + 1; n++) {
if (i == mid + 1){
arr[n] = temp[j];
j++;
}
else if (j == right + 1) {
arr[n] = temp[i];
i++;
}
else if (temp[i].compareTo(temp[j]) <= 0) {
arr[n] = temp[i];
i++;
}
else{
arr[n] = temp[j];
j++;
}
}
}
public static<E extends Comparable<E>> void merge(E[] arr, int left, int mid, int right) {
int i = left;
int j = mid + 1;
E[] tem = Arrays.copyOfRange(arr, left, right + 1);
for (int n = left; n < right + 1; n++) {
if (i == mid + 1){
arr[n] = tem[j - left];
j++;
}
else if (j == right + 1) {
arr[n] = tem[i - left];
i++;
}
else if (tem[i - left].compareTo(tem[j - left]) <= 0) {
arr[n] = tem[i - left];
i++;
}
else{
arr[n] = tem[j - left];
j++;
}
}
}
/**
* 优化merge()方法,复用temp数组,节省空间
*/
public static<E extends Comparable<E>> void mergeOptimised(E[] arr, int left, int mid, int right, E[] temp) {
int i = left;
int j = mid + 1;
/**
* System.arraycopy()方法将传过来的排好序的两个分数组在相同位置赋值给副本数组temp,因此索引范围一致没有偏移
*/
System.arraycopy(arr, left, temp, left, right - left + 1);
for (int n = left; n < right + 1; n++) {
if (i == mid + 1){
arr[n] = temp[j];
j++;
}
else if (j == right + 1) {
arr[n] = temp[i];
i++;
}
else if (temp[i].compareTo(temp[j]) <= 0) {
arr[n] = temp[i];
i++;
}
else{
arr[n] = temp[j];
j++;
}
}
}
}
class ArrayGenerator {
private ArrayGenerator (){}
public static Integer[] generatorRandomArray (Integer n, Integer maxBound){
Integer[] arr = new Integer[n];
Random random = new Random();
for (int i = 0; i < n; i++) {
arr[i] = random.nextInt(maxBound);
}
return arr;
}
public static Integer[] generatorSortedArray (Integer n, Integer maxBound){
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++) {
arr[i] = i;
}
return arr;
}
}
class Verify {
private Verify (){}
public static<E extends Comparable<E>> boolean isSorted(E[] arr){
for (int i = 0; i < arr.length - 1; i++) {
if (arr[i].compareTo(arr[i + 1]) > 0) {
return false;
}
}
return true;
}
public static<E extends Comparable<E>> void testTime(String AlgorithmName, E[] arr) {
long startTime = System.nanoTime();
if (AlgorithmName.equals("sortOptimised1")) {
MergeSort.sortOptimised1(arr);
}
if (AlgorithmName.equals("sortOptimised2")) {
MergeSort.sortOptimised2(arr);
}
if (AlgorithmName.equals("sortBU")) {
MergeSort.sortBU(arr);
}
long endTime = System.nanoTime();
if (!Verify.isSorted(arr)){
throw new RuntimeException(AlgorithmName + "算法排序失败!");
}
System.out.println(String.format("%s算法,测试用例为%d,执行时间:%f秒", AlgorithmName, arr.length, (endTime - startTime) / 1000000000.0));
}
}