1、概要

  特定4整数,每个号码只能使用一次;随意使用 + - * / ( ) 。构建表达,从而使最终结果24,这是一种常见的操作者24游戏点。该方案的这一方面是非常,它们一般详尽的解决。

本文介绍一种典型的算24点的程序算法,并给出两个详细的算24点的程序:一个是面向过程的C实现,一个是面向对象的java实现。

  2、基本原理

  基本原理是穷举4个整数全部可能的表达式。然后对表达式求值。

  表达式的定义: expression = (expression|number) operator (expression|number)

  由于能使用的4种运算符 + - * / 都是2元运算符,所以本文中仅仅考虑2元运算符。2元运算符接收两个參数。输出计算结果。输出的结果參与兴许的计算。

  由上所述,构造全部可能的表达式的算法例如以下:

  (1) 将4个整数放入数组中

  (2) 在数组中取两个数字的排列,共同拥有 P(4,2) 种排列。对每个排列,

  (2.1) 对 + - * / 每个运算符,

  (2.1.1) 依据此排列的两个数字和运算符。计算结果

  (2.1.2) 改表数组:将此排列的两个数字从数组中去除掉,将 2.1.1 计算的结果放入数组中

  (2.1.3) 对新的数组。反复步骤 2

  (2.1.4) 恢复数组:将此排列的两个数字增加数组中,将 2.1.1 计算的结果从数组中去除掉

  可见这是一个递归过程。

步骤 2 就是递归函数。当数组中仅仅剩下一个数字的时候。这就是表达式的终于结果,此时递归结束。

  在程序中。一定要注意递归的现场保护和恢复,也就是递归调用之前与之后。现场状态应该保持一致。在上述算法中。递归现场就是指数组,2.1.2 改变数组以进行下一层递归调用,2.1.3 则恢复数组。以确保当前递归调用获得下一个正确的排列。

  括号 () 的作用仅仅是改变运算符的优先级,也就是运算符的计算顺序。所以在以上算法中,无需考虑括号。括号仅仅是在输出时需加以考虑。

  3、面向过程的C实现

  这是 csdn 算法论坛前版主海星的代码,程序很简练、精致:

#include  

#include  

#include  

using namespace std; 

const double PRECISION = 1E-6; 

const int COUNT_OF_NUMBER  = 4; 

const int NUMBER_TO_BE_CAL = 24; 

double number[COUNT_OF_NUMBER]; 

string expression[COUNT_OF_NUMBER]; 

bool Search(int n) 

{ 

    if (n == 1) { 

        if ( fabs(number[0] - NUMBER_TO_BE_CAL) < PRECISION ) { 

            cout << expression[0] << endl; 

            return true; 

        } else { 

            return false; 

        } 

    } 

    for (int i = 0; i < n; i++) { 

        for (int j = i + 1; j < n; j++) { 

            double a, b; 

            string expa, expb; 

            a = number[i]; 

            b = number[j]; 

            number[j] = number[n - 1]; 

            expa = expression[i]; 

            expb = expression[j]; 

            expression[j] = expression[n - 1]; 

            expression[i] = '(' + expa + '+' + expb + ')'; 

            number[i] = a + b; 

            if ( Search(n - 1) ) return true; 

            

            expression[i] = '(' + expa + '-' + expb + ')'; 

            number[i] = a - b; 

            if ( Search(n - 1) ) return true; 

            

            expression[i] = '(' + expb + '-' + expa + ')'; 

            number[i] = b - a; 

            if ( Search(n - 1) ) return true; 

                        

            expression[i] = '(' + expa + '*' + expb + ')'; 

            number[i] = a * b; 

            if ( Search(n - 1) ) return true; 

            if (b != 0) { 

                expression[i] = '(' + expa + '/' + expb + ')'; 

                number[i] = a / b; 

                if ( Search(n - 1) ) return true; 

            }  

            if (a != 0) { 

                expression[i] = '(' + expb + '/' + expa + ')'; 

                number[i] = b / a; 

                if ( Search(n - 1) ) return true; 

            } 

            number[i] = a; 

            number[j] = b; 

            expression[i] = expa; 

            expression[j] = expb; 

        } 

    } 

    return false; 

} 

void main() 

{ 

    for (int i = 0; i < COUNT_OF_NUMBER; i++) { 

        char buffer[20]; 

        int  x; 

        cin >> x; 

        number[i] = x; 

        itoa(x, buffer, 10); 

        expression[i] = buffer; 

    } 

    if ( Search(COUNT_OF_NUMBER) ) { 

        cout << "Success." << endl; 

    } else { 

        cout << "Fail." << endl; 

    }         

} 

  使用任一个 c++ 编译器编译就可以。

  这个程序的算法与 2、基本原理所述的算法基本同样。当中 bool Search(int n) 就是递归函数。double number[] 就是数组。程序中比較重要的地方解释例如以下:

  (1) string expression[] 存放每一步产生的表达式,最后的输出中要用到。expression[] 与 number[] 相似,也是递归调用的现场。必须在下一层递归调用前改变、在下一层递归调用后恢复。

  (2) number[] 数组长度仅仅有4。

在 search() 中。每次取出两个数后,使用局部变量 a, b 保存这两个数,同一时候数组中增加运算结果。并调整数组使得有效的数字都排列在数组前面。在下一层递归调用后,利用局部变量 a, b 恢复整个数组。对 expression[] 的处理与 number[] 相似。

  (3) 由于 + * 满足交换率而 - / 不满足,所以程序中,从数组生成两个数的排列,

  for (int i = 0; i < n; i++) {

  for (int j = i + 1; j < n; j++) {

  其内层循环 j 是从 i+1 -> n。而非从 0->n ,由于对于交换率来说。两个数字的顺序是无所谓的。

当然,循环内部对 - / 做了特殊处理,计算了 a-b b-a a/b b/a 四种情况。

  (4) 此程序仅仅求出第一个解。

当求出第一个解时。通过层层 return true 返回并产量。和程序结束。

  (5) 同 double 为了解决,精度是指,推断是否 24 。

考虑 (5-1/5)*5 这种表达你知道为什么。

  (6) 产量,对于每一个表情都加入了括号。