二叉排序树(Binary Sort Tree):或者是一颗空树,或者是具有下面性质的树:(1)若它的左子树不空,则左子树上所以结点的值均小于它的根节点的值;(2)若它的右子树不空,则右子树上的所以结点的值均大于它的根节点的值;(3)它的左、右子树也各自是二叉排序树。
二叉排序树的基本操作均能够在O(h)时间内完毕(算法导论p165)。
相关操作代码例如以下:
int InsertBST(BiTree &T, int key)//递归插入
{
if (T == NULL)
{
T = new BiNode;
T->data = key;
T->lchild = T->rchild = NULL;
return 1;
}
else
{
if (key == T->data)
return 0;
else if (key < T->data)
return InsertBST(T->lchild, key);
else
return InsertBST(T->rchild, key);
}
}
int InsertBST_(BiTree &T, int key)//迭代插入
{
//find the insert position
BiNode *f = T, *p = T;
while (p != NULL)
{
if (key == p->data)
return 0;
f = p; //记录上一次訪问的结点
p = key < p->data ? p->lchild : p->rchild;
}
//分配新结点
BiNode *q = new BiNode;
q->lchild = q->rchild = NULL;
q->data = key;
//插入
if (T == NULL) //若根为空
{
T = q;
return 1;
}
if (key < f->data)
f->lchild = q;
else
f->rchild = q;
return 1;
}
BiNode *SearchBST(BiTree T, int key)//递归搜索
{
if (!T)
return NULL;
else
{
if (key == T->data)
return T;
else if (key < T->data)
return SearchBST(T->lchild, key);
else
return SearchBST(T->rchild, key);
}
}
BiNode* SearchBST_(BiTree T, int key)//迭代搜索
{
while (T != NULL)
{
if (key == T->data)
break;
T = key < T->data ? T->lchild : T->rchild;
}
return T;
}
int DeleteNode(BiNode *&p)
{
BiNode *q;
//从二叉排序树中删除结点p,并重接它的的左或右子树
if (p == NULL) return 0;
if (p->lchild == NULL) //左子树空则仅仅需重接右子树
{
q = p; p = p->rchild; delete q;
}
else if (p->rchild == NULL) //右子树空则仅仅需重接左子树
{
q = p;
p = p->lchild;
delete q;
}
else //左右子树均不空
{
BiNode *s;
#if 0
//用p的直接前驱取代p,然后删除p的直接前驱
q = p; s = p->lchild;//转左,然后向右到尽头
while (s->rchild)
{
q = s; s = s->rchild;
}
p->data = s->data; //s指向被删除结点,q指向被删除结点的前驱
if (q != p)
q->rchild = s->lchild; //重接q的右子树
else
q->lchild = s->lchild; //重接q的左子树
#else
//用p的直接后继取代p,然后删除p的直接后继
q = p; s = p->rchild;
while (s->lchild)
{
q = s; s = s->lchild;
}
p->data = s->data;
if (p != p)
q->lchild = s->rchild;
else
q->rchild = s->rchild;
#endif
delete s;
}
return 1;
}
int DeleteBST(BiTree &T, int key)
{
if (T == NULL)
return 0;
else
{
if (key == T->data)
return DeleteNode(T);
else if (key < T->data)
return DeleteBST(T->lchild, key);
else
return DeleteBST(T->rchild, key);
}
}
void CreateBST(BiTree &T, int a[], int n)
{
T = NULL;
for (int i = 0; i < n; i++)
{
InsertBST_(T, a[i]);
}
}
void DestoryBST(BiTree &T)
{
if (T == NULL)
return;
DestoryBST(T->lchild);
DestoryBST(T->rchild);
delete T; T = NULL;
}
void InOrderTraverse(BiTree T)//=O(n)时间复杂度
{
if (T == NULL)
return;
InOrderTraverse(T->lchild);
cout << T->data << " ";
InOrderTraverse(T->rchild);
}
測试代码:
int main()
{
const int n = 10;
int a[n] = {3, 2, 8, 6, 1, 4, 5, 7, 1, 3};
BiTree T;
CreateBST(T, a, n);
InOrderTraverse(T);
cout << endl;
BiNode *p;
for (int i = 1; i < 10; i++)
{
p = SearchBST_(T, i);
if (p != NULL)
cout << p->data << endl;
}
int b[5]={0, 2, 6, 1, 7};
int ret;
for (int i = 0; i < 5; i++)
{
ret = DeleteBST(T, b[i]);
if (ret == 0)
cout << "删除 " << b[i] << " 失败" << endl;
else
{
cout << "删除 " << b[i] << " 后: " ;
InOrderTraverse(T);
cout << endl;
}
}
DestoryBST(T);
getchar();
return 0;
}