搜索 DFS 码农题 脑洞题



 

题目描述

Mayan puzzle是最近流行起来的一个游戏。游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定的步数内消除所有的方块,消除方块的规则如下:

1 、每步移动可以且仅可以沿横向(即向左或向右)拖动某一方块一格:当拖动这一方块时,如果拖动后到达的位置(以下称目标位置)也有方块,那么这两个方块将交换位置(参见输入输出样例说明中的图6 到图7 );如果目标位置上没有方块,那么被拖动的方块将从原来的竖列中抽出,并从目标位置上掉落(直到不悬空,参见下面图1 和图2);

[NOIP2011] 提高组 洛谷P1312 Mayan游戏_输入输出

2 、任一时刻,如果在一横行或者竖列上有连续三个或者三个以上相同颜色的方块,则它们将立即被消除(参见图1 到图3)。

[NOIP2011] 提高组 洛谷P1312 Mayan游戏_搜索_02

注意:

a) 如果同时有多组方块满足消除条件,几组方块会同时被消除(例如下面图4 ,三个颜色为1 的方块和三个颜色为 2 的方块会同时被消除,最后剩下一个颜色为 2 的方块)。

b) 当出现行和列都满足消除条件且行列共享某个方块时,行和列上满足消除条件的所有方块会被同时消除(例如下面图5 所示的情形,5 个方块会同时被消除)。

3 、方块消除之后,消除位置之上的方块将掉落,掉落后可能会引起新的方块消除。注意:掉落的过程中将不会有方块的消除。

上面图1 到图 3 给出了在棋盘上移动一块方块之后棋盘的变化。棋盘的左下角方块的坐标为(0, 0 ),将位于(3, 3 )的方块向左移动之后,游戏界面从图 1 变成图 2 所示的状态,此时在一竖列上有连续三块颜色为4 的方块,满足消除条件,消除连续3 块颜色为4 的方块后,上方的颜色为3 的方块掉落,形成图 3 所示的局面。

输入输出格式

输入格式:

 

输入文件mayan.in,共 6 行。

第一行为一个正整数n ,表示要求游戏通关的步数。

接下来的5 行,描述 7*5 的游戏界面。每行若干个整数,每两个整数之间用一个空格隔开,每行以一个0 结束,自下向上表示每竖列方块的颜色编号(颜色不多于10种,从1 开始顺序编号,相同数字表示相同颜色)。

输入数据保证初始棋盘中没有可以消除的方块。

 

输出格式:

 

输出文件名为mayan.out。

如果有解决方案,输出 n 行,每行包含 3 个整数x,y,g ,表示一次移动,每两个整数之间用一个空格隔开,其中(x ,y)表示要移动的方块的坐标,g 表示移动的方向,1 表示向右移动,-1表示向左移动。注意:多组解时,按照 x 为第一关健字,y 为第二关健字,1优先于-1 ,给出一组字典序最小的解。游戏界面左下角的坐标为(0 ,0 )。

如果没有解决方案,输出一行,包含一个整数-1。

 

输入输出样例



输入样例#1:

3
1 0
2 1 0
2 3 4 0
3 1 0
2 4 3 4 0


输出样例#1:

2 1 1
3 1 1
3 0 1


说明

【输入输出样例说明】

按箭头方向的顺序分别为图6 到图11

[NOIP2011] 提高组 洛谷P1312 Mayan游戏_搜索_03

样例输入的游戏局面如上面第一个图片所示,依次移动的三步是:(2 ,1 )处的方格向右移动,(3,1 )处的方格向右移动,(3 ,0)处的方格向右移动,最后可以将棋盘上所有方块消除。

【数据范围】

对于30% 的数据,初始棋盘上的方块都在棋盘的最下面一行;

对于100%的数据,0 < n≤5 。

noip2011提高组day1第3题

 

本质上是一道码农题。

掉落和消除的操作都需要模拟,搜索的部分有个重要剪枝——相邻两个块非空,只搜索把左边那个右移(右边那个左移与之等效,但按照规定不是最优解)

 



1 /*by SilverN*/
2 #include<algorithm>
3 #include<iostream>
4 #include<cstring>
5 #include<cstdio>
6 #include<cmath>
7 #include<vector>
8 using namespace std;
9 const int mx[5]={0,1,0,-1,0};
10 const int my[5]={0,0,1,0,-1};
11 int ans[30][3];//答案
12 int mp[8][6];
13 int a[8][6];
14 int n;
15 void DEBUG(int a[8][6]){
16 int i,j;
17 printf("info:\n");
18 for(i=1;i<=7;i++){
19 for(j=1;j<=5;j++) printf("%d ",a[i][j]);
20 printf("\n");
21 }
22 printf("fin\n");
23 return;
24 }
25 bool fall(){//掉落
26 bool flag=0;
27 for(int j=1;j<=5;++j){
28 int i=1;
29 while(a[i][j]){i++;}
30 int tmp=i;
31 for(;i<=7;i++){
32 if(a[i][j]){
33 a[tmp++][j]=a[i][j];
34 a[i][j]=0;
35 flag=1;
36 }
37 }
38 }
39 return flag;
40 }
41 bool kl[8][6];
42 int BFS(){//消除方块
43 // DEBUG(a);
44 memset(kl,0,sizeof kl);
45 int up,down,left,right,i,j;
46 for(i=1;i<=7;i++)
47 for(j=1;j<=5;j++){
48 if(!a[i][j])continue;
49 up=down=i;left=right=j;
50 while(right<5 && a[i][right+1]==a[i][j])right++;
51 while(left>1 && a[i][left-1]==a[i][j])left--;
52 while(up<7 && a[up+1][j]==a[i][j])up++;
53 while(down>1 && a[down-1][j]==a[i][j])down--;
54 if(right-left>=2)for(int k=left;k<=right;k++)kl[i][k]=1;
55 if(up-down>=2)for(int k=down;k<=up;k++)kl[k][j]=1;
56 }
57 int flag=0;
58 for(i=1;i<=7;++i)
59 for(j=1;j<=5;++j)
60 if(kl[i][j])a[i][j]=0,flag++;
61 if(fall()) flag+=BFS();
62 // printf("flag:%d\n",flag);
63 return flag;
64 }
65 int DFS(int dep,int cnt){
66 // DEBUG(a);
67 // printf("info:%d %d\n",dep,cnt);
68
69 if(dep>n){
70 if(!cnt)return 1;
71 return 0;
72 }
73 int cpy[8][6];
74 memcpy(cpy,a,sizeof a);
75 int i,j;
76 for(j=1;j<=5;j++){
77 for(i=1;i<=7;i++){
78 if(!a[i][j])continue;
79 if(j<5 && a[i][j]!=a[i][j+1]){//右移
80 ans[dep][1]=j;ans[dep][2]=i;ans[dep][0]=1;
81 swap(a[i][j],a[i][j+1]);
82 int tmp=BFS();
83 // printf("sov1:%d\n",tmp);
84 if(DFS(dep+1,cnt-tmp))return 1;
85 memcpy(a,cpy,sizeof cpy);
86 }
87
88 if(j>1 && !a[i][j-1]){//左移
89 // printf("left:%d %d %d\n",j,i,a[i][j]);
90 ans[dep][1]=j;ans[dep][2]=i;ans[dep][0]=-1;
91 swap(a[i][j],a[i][j-1]);
92 int tmp=BFS();
93 // printf("sov2:%d\n",tmp);
94 if(DFS(dep+1,cnt-tmp))return 1;
95 memcpy(a,cpy,sizeof cpy);
96 }
97
98 }
99 }
100 return 0;
101 }
102
103 void PRT(){
104 for(int i=1;i<=n;i++)printf("%d %d %d\n",ans[i][1]-1,ans[i][2]-1,ans[i][0]);
105 return;
106 }
107 int main(){
108 scanf("%d",&n);
109 int i,j;
110 int x,y;
111 int num=0;
112 for(j=1;j<=5;j++)
113 for(i=1;scanf("%d",&x) && x;i++)mp[i][j]=x,num++;
114 memcpy(a,mp,sizeof mp);
115 // printf("num:%d\n\n",num);
116 // DEBUG(a);
117 //
118 if(DFS(1,num))PRT();
119 else printf("-1\n");
120 return 0;
121 }