You are given an array a. You have to answer the following queries:

You are given two integers l and r. Let ci be the number of occurrences of i in al: r, where al: r is the subarray of a from l-th element to r-th inclusive. Find the Mex of {c0, c1, …, c109} 
You are given two integers p to x. Change ap to x. 
The Mex of a multiset of numbers is the smallest non-negative integer not in the set.

Note that in this problem all elements of a are positive, which means that c0 = 0 and 0 is never the answer for the query of the second type.

Input
The first line of input contains two integers n and q (1 ≤ n, q ≤ 100 000) — the length of the array and the number of queries respectively.

The second line of input contains n integers — a1, a2, …, an (1 ≤ ai ≤ 109).

Each of the next q lines describes a single query.

The first type of query is described by three integers ti = 1, li, ri, where 1 ≤ li ≤ ri ≤ n — the bounds of the subarray.

The second type of query is described by three integers ti = 2, pi, xi, where 1 ≤ pi ≤ n is the index of the element, which must be changed and 1 ≤ xi ≤ 109 is the new value.

Output
For each query of the first type output a single integer — the Mex of {c0, c1, …, c109}.

Example

input
10 4
1 2 3 1 1 2 2 2 9 9
1 1 1
1 2 8
2 7 1
1 2 8
1
2
3
4
5
6
output
2
3
2
 

题意:

题意难懂,两种操作,

1.查询:区间所有数的次数第一个为0的自然数,假如这个区间1出现2次,3出现1次,则答案是3,注意是出现次数

2、修改:修改某一个位置的值。

分析:

带修改莫队的基本应用,用一个num记录数出现的个数就ok,看代码把,一看就懂

///带莫队算法模板:求区间不同数的个数+单点修改
#include<cstdio>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<functional>
#include<cstring>
#include<string>
#include<cstdlib>
#include<iomanip>
#include<numeric>
#include<cctype>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<list>
#include<set>
#include<map>
using namespace std;
const int maxn=1000005;
typedef long long ll;

void add(int x);
void del(int x);
void modify(int x,int ti); //这个函数会执行或回退修改ti(执行还是回退取决于是否执行过,具体通过swap实现),x表明当前的询问是x,即若修改了区间[q[x].l,q[x].r]便要更新答案

int sz,cnt[maxn],b[maxn],a[maxn],Ans,ans[maxn],num[maxn];

struct Change
{
int p,col;
}c[maxn];

struct Query
{
int l,r,t,id;
bool operator<(Query& b)
{
return l/sz==b.l/sz?(r/sz==b.r/sz?t<b.t:r<b.r):l<b.l;
}
}q[maxn];

int main()
{
int n,m;

while(scanf("%d%d",&n,&m)!=-1)
{
memset(cnt,0,sizeof(cnt));
memset(num,0,sizeof(num));
sz=pow(n,0.66666);

for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
int op;
int ccnt=0,qcnt=0;
for (int i=1;i<=m;++i)
{
scanf("%d",&op);
if (op==1)
{
++qcnt;
scanf("%d%d",&q[qcnt].l,&q[qcnt].r) ;
q[qcnt].t=ccnt;
q[qcnt].id=qcnt;

}
else
{
++ccnt;
scanf("%d%d",&c[ccnt].p,&c[ccnt].col);
b[n+ccnt]=c[ccnt].col;
}
}


sort(b+1,b+n+ccnt+1);
int sum=unique(b+1,b+n+ccnt+1)-b-1;
for(int i=0;i<=n;i++)
{
a[i]=lower_bound(b+1,b+sum+1,a[i])-b;
//cout<<a[i]<<endl;
}
for(int i=1;i<=ccnt;i++)
{
c[i].col=lower_bound(b+1,b+sum+1,c[i].col)-b;
}
int l=1,r=0,now=0;
Ans=0;
sort(q+1,q+qcnt+1);
for (int i=1;i<=qcnt;++i)
{
while (r<q[i].r)
{
add(a[++r]);
}
while(l>q[i].l)
{
add(a[--l]);
}
while (l<q[i].l)
{
del(a[l++]);
}
while (r>q[i].r)
{
del(a[r--]);
}
while (now<q[i].t)
{
modify(i,++now);
}
while (now>q[i].t)
{
modify(i,now--);
}

for(ans[q[i].id]=1;num[ans[q[i].id]]>0;++ans[q[i].id]);

}

for (int i=1;i<=qcnt;++i)
{
cout<<ans[i]<<endl;
}
}

return 0;
}

void add(int x)
{
num[cnt[x]]--;
cnt[x]++;
num[cnt[x]]++;
}

void del(int x)
{
num[cnt[x]]--;
cnt[x]--;
num[cnt[x]]++;
}

void modify(int x,int ti)
{
if (c[ti].p>=q[x].l&&c[ti].p<=q[x].r)
{
del(a[c[ti].p]);
add(c[ti].col);
}
swap(a[c[ti].p],c[ti].col);
}