Focal Loss for Dense Object Detection

1.

prevents the vast number of easy negatives from overwhelming the detector during training.

在训练期间防止大量容易的负面因素使检测器不堪重负。

 

2.

Recent work on one-stage detectors, such asYOLO and SSD, demonstrates promising results, yielding faster detectors with accuracy within 10-40% relative to state-of-the-art two-stage methods.

最近关于单级探测器的工作,例如YOLO和SSD,显示出有希望的结果,相对于现有技术的两阶段方法,产生更快的探测器,精度在10-40%之内。

 

Non-Stationary Texture Synthesis by Adversarial Expansion

1.

In our approach, a dedicated GAN must be trained for each input exemplar, which takes considerable computational resources.

在我们的方法中,必须针对每个输入示例训练专用GAN,这需要相当多的计算资源。