1自顶向下的设计方法:以一个总问题开始,试图把它表达为很多小问题组成的解决方案。再用同样的技术依次攻破每个小问题,最终问题变得非常小,以至于可以很容易解决。然后只需把所有的碎片组合起来,就可以得到一个程序。顶层设计:自顶向下设计中最重要的是顶层设计。 以体育竞技分析为例,可以从问题的IPO描述开始。大多数程序都可以简单将IPO 描述直接用到程序结构设计中,体育竞技分析从用户得到模拟参数模拟比赛,最
文章目录一、堆数据结构创建1. 建堆步骤2. 建堆实现3. 建堆效率二、完整测试代码三、参考资料
一、堆数据结构创建为描述方便,下面介绍自底向上构建堆的方式时,假设给定数量为(其中为堆的高度)的任意顺序键值对,则数量为的键值对恰好可以填满高度为的完全二叉树,且每一层的键值对数量分别为、、、、、,此时二叉树的高度为。1. 建堆步骤下面以给定个键值对为例介绍如何自底向上构建堆:易知,上述个键
转载
2023-11-13 22:09:22
40阅读
集成测试的方法有两种: 非增量式测试和增量式测试emmmmmm.....说人话就是:非增量式是每个模块测试完了再连接增量式则是测一个模块,就连接一个模块而采用增式测试时又有两种选择: 自顶向下结合、自底向上结合。自顶向下结合主控模块作为测试驱动器;根据集成的方式(深度或广度),下层的桩模块一个一个地被替换为真正的模块;在每个模块被集成时,都必须进行单元测试。重复第二步,直到整个系统结构被集成完成。
转载
2023-07-27 17:55:52
64阅读
动态规划与分治法相似,都是通过组合子问题的解来求解原问题。不同的是,分治法将问题划分为互不相交的子问题,递归的求解子问题,再将他们的解组合起来,求出原问题的解。与之相反,动态规划应用于子问题重叠的情况,即不同的子问题具有公共的子子问题。在这种情况下,分治法会做许多不必要的工作,他会反复求解那些公共子子问题。而动态规划只会对子子问题求解一次,将其保存在一个表格中,从而避免每次求解时都重新计
转载
2024-06-27 21:00:16
37阅读
# heap_priority_queue.py
from priority_queue import PriorityQueueBase
class Empty(Exception):
"""尝试对空优先级队列进行删除操作时抛出的异常"""
pass
class HeapPriorityQueue(PriorityQueueBase):
"""使用堆存储键值对形式记录的优先级队列"""
def
转载
2024-04-18 08:42:38
47阅读
常用的本来想把动态规划单独拿出来写三篇文章呢,后来发现自己学疏才浅,实在是只能讲一些皮毛,更深入的东西尝试构思了几次,也没有什么进展,打算每种设计思想就写一篇吧。动态规划(Dynamic Programming)是一种非常有用的用来解决复杂问题的算法,它通过把复杂问题分解为简单的子问题的方式来获得最优解。一、自顶向下和自底向上总体上来说,我们可以把动态规划的解法分为自顶向下和自底向上两种方式。一个
转载
2023-07-08 22:05:06
100阅读
# Python 自底向上层次聚类实现指南
## 摘要
在本文中,我将指导你如何使用 Python 实现自底向上层次聚类算法。这个算法可以帮助你在数据集中找到相关性最强的数据点,并将它们聚类在一起。如果你是一名刚入行的小白开发者,本文将为你提供一个详细的教程,帮助你快速上手这一算法。
## 整体流程
首先,让我们来看一下整个实现过程的流程。我们可以将流程简化成以下几个步骤:
```merma
原创
2024-04-20 05:10:57
64阅读
Java面向对象_4.Java继承上一、继承1.一种类与类之间的关系2.继承的关系3.特点二、继承的实现1.extends2.Java单继承3.注意三、方法的重写1.重写和重载2.重写的条件3.注意四、访问修饰符1.四种访问修饰符五、super关键字的使用2.顺序3.注意4.this和super 一、继承1.一种类与类之间的关系使用已存在的类的定义作为基础建立新类。 子类(派生类) —>
转载
2023-08-31 08:14:11
64阅读
我们大家应该都知道归并排序最简单想到的就是自顶向下,采用递归的方法逐步分解为logn层,然后,对每一层采用归并排序,每一层的时间复杂度为O(n),所以归并排序是时间复杂度为O(nlogn)的一种有效的排序方法。那下面我们就来学习一下归并排序的一种优化——自底向上来完成归并排序PS:我们这里都是默认由小到大排序自底向上归并排序过程 我们这里就可以化递归为迭代,来实现算法tmplate <typ
转载
2024-06-05 22:23:51
31阅读
自上而下分析算法要点:。由根向下构造语法树。构造最左推导。推导出的终结符是否与当前输入符匹配5.1 确定的自顶向下分析思想例1 :若有文法G1[S]S →pA | qBA →cAd |aB → dB |bf对于输入串:W=pccadd自顶向下推导过程:S pA pcAd pccAddpccadd分析成功该文法有两个特点:l &n
转载
2024-03-08 21:47:50
91阅读
# 利用 Java Cup 实现 LALR 自顶向下和自底向上的解析器
作为一名刚入行的小白,理解 LALR 分析和如何使用 Java Cup 构建解析器是一个挑战。Java Cup 是一种语法分析工具,它可以将语法规则转化为 Java 代码,从而实现解析功能。本文将为你提供一个简明的流程和必要的代码示例,帮助你掌握如何实现 LALR 自顶向下和自底向上的解析。
## 一、整体流程
首先,让
文章目录Python语言程序设计笔记8(北理工mooc)程序设计方法学自顶向下和自底向上Python程序设计思维提高用户体验Python第三方库安装安装方法 Python语言程序设计笔记8(北理工mooc)程序设计方法学自顶向下和自底向上自顶向下(设计):将一个总问题分为若干小问题,再以同样的方式分解小问题,直至小问题可以用计算机简洁明了的解决为止。自底向下(执行):分单元测试,逐步组装,按照自
转载
2023-12-07 07:24:46
74阅读
文章目录计算思维自顶向下的设计方法实例步骤顶层设计输出介绍信息获取参数输入程序核心:比赛过程代码自底向上 计算思维实证思维:以实验和验证为特征逻辑思维:以推理和演绎为特征计算思维:以设计和构造为特征计算思维的本质:抽象(Abstraction)和自动化(Automation)自顶向下的设计方法一个总问题开始,试图把它表达为很小的问题组成的解决办法,进而可以很容易的解决 “大事化小,小事化了”实例
转载
2023-11-10 13:57:17
71阅读
自顶向下自顶向下的算法先从图像中检测出所有人,随后利用单人姿态估计的方法对所有人进行姿态估计。自顶向下算法的缺点是算法运行效率随着人数增加而降低,且部分被遮挡的人无法被检测,精度不高。自底向上自底向上的算法,先检测出所有人的骨点,再将骨点进行连接形成图,最后通过图优化的方法剔除错误的连接,实现多人姿态估计。自底向上算法的优点是运行时间不随人数增加而线性增加,更有利于实时多人姿态估计。参考链接
原创
2023-01-16 08:07:09
465阅读
思路 先将原数组不断二分成两个部分 再把排好序的两部分向上合并为一个新的有序数组,最终的数组就是有序的 这里隐含着一个数学归纳法的证明 二分至最终两个数组只有一个元素时,它们本身就是有序的 从i-1层向上合并到 i 层,i 层是有序的 所以最终得到的数组是有序的 实现 mergeSort():供用户
转载
2020-01-04 15:45:00
273阅读
2评论
# 数据仓库自顶向下和自底向上的方法
数据仓库是企业数据管理和分析的重要基础,其设计和构建方法通常有两种主流思路:自顶向下(Top-Down)和自底向上(Bottom-Up)方法。这两种方法各有优缺点,适用于不同的业务场景。本文将详细探讨这两种方法的概念、实现过程,同时也会通过代码示例来帮助理解。
## 一、数据仓库自顶向下方法
### 1. 概念
自顶向下的方法是由整体到局部的设计思路。
性能(performance)设计非常重要,对于服务器端实时交易系统来说系统性能的重要性不言而喻,对客户端软件来说性能好的软件也会获得良好的用户体验,从而给用户留下高质量软件的良好印象。因此在进行架构设计中性能设计非常重要。 但架构设计实际是一个平衡设计,在可用性、可扩展性、可维护性、可靠性、高性能等之间做个妥协选择。这
LR0 LR1(带向前搜索符) SLR1分析表结构都是这种情况的,解释一下acc,一张表格有且仅有一个acc,也就是终止状态,当存在I0并且点到了最后的时候那么就是acc了。在写文法的时候我们要先预处理文法,一是先分裂文法也就是把文法拆开,二是拓展文法,比如一开始的符号是s ,我们加入一个s’->s的状态LR(0)解释一下规约和移进规约就是s->t
原创
2022-04-30 11:58:15
10000+阅读
链接:://blog..net/cjf_iceking/article/details/7920153 今日翻开严蔚敏的《数据结构(C语言版)》感慨一二,首先书中讲解之详细与形象乃本人博文所不能比拟,有这么一句话说的好"所有的答案都在书中,只是你学习的时候没有注意罢了";其次书的...
转载
2014-07-21 23:42:00
140阅读
2评论
在软件工程领域,系统集成是一项关键的技术,它涉及到将不同的软件组件、模块或子系统组合成一个完整、可运行的软件系统。在系统集成的过程中,自底向上的集成方法是一种常用的策略,它从底层组件或模块开始,逐步向上构建整个系统。本文将探讨软考系统集成自底向上集成的概念、优势以及实施过程。
一、软考系统集成自底向上集成的概念
软考系统集成自底向上集成是一种系统集成方法,它从底层组件或模块开始,逐步向上构建整
原创
2023-11-01 15:21:09
123阅读