获得语音信号的fbank特征和MFCC特征的一般步骤是:预加重、分帧、加窗、短时傅里叶变换(STFT)、mel滤波、去均值等。对fbank做离散余弦变换(DCT)即可获得mfcc特征。 PS:“log mel-filter bank outputs”和“FBANK features”说的是同一个东西。Step0 MFCC倒谱参数:MFCCs(Mel Frequency Cepstral Coeff
概述 语音识别 人工智能 比较热门 技术也比较成熟,各大公司 相继 推出 各自 语音助手机器人,如百度的小度机器人、阿里的天猫精灵等。 语音识别算法当前主要是由RNN、LSTM、DNN-HMM等机器学习和深度学习技术做支撑。但训练这些模型的第一步就是将音频文件数据化,提取当中的语音特征。 python音频库 pydub Pydub lets you do stuff to audio in a
原创 2021-08-16 09:42:55
443阅读
语音信号为从声道输入的速度波(输入信号),与声道形状(系统)卷积得到的声压波。语音信号的特征参数的提取正是对语音信号进行时域和频域的处理分离出声道形状(系统)的过程。声道形状(系统)也正是无论任何语音信号,只要每个字母或数字相同(它的发音就相同),它就在一定程度上相同的特征参量(频域共振峰(震荡的顶点)的包络)。过程称为倒谱分析:(频域时对信号进行取对数处理)时域:卷积性;->fft频域:乘
语音信号是一种短时平稳信号, 即够比较 准确地表达语音信号的 特征具有一定的唯一性端点检测:一段语音信号中准确地找出 语音信号的起始点和结束点目的.
原创 2022-08-18 18:06:16
1705阅读
作者:桂。前言语音识别等应用离不开音频特征提取,最近在看音频特征提取的内容,用到一个python下的工具包——pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis,该工具包的说明文档可以点击这里下载,对应的github链接点击这里。这个工具包原说明文档支持的是Linux安装,且不能与python3很好地兼
高通滤波,弥补高频部分的损耗,保护了声道信息:y[n] -> y[n] - coef * y[n-1]。原理:将每帧均方根能量与全局最大均方根能量进行比较。
 概述语音识别是当前人工智能的比较热门的方向,技术也比较成熟,各大公司也相继推出了各自的语音助手机器人,如百度的小度机器人、阿里的天猫精灵等。语音识别算法当前主要是由RNN、LSTM、DNN-HMM等机器学习和深度学习技术做支撑。但训练这些模型的第一步就是将音频文件数据化,提取当中的语音特征。MP3文件转化为WAV文件录制音频文件的软件大多数都是以mp3格式输出的,但mp3格式文件对语音
文章目录1 定义2. 字典特征提取API3. 字典特征提取案例:1.实现效果:2.实现代
HOGHOG 特征, histogram of oriented gradient, 梯度方向直方图特征, 作为提取基于梯度的特征, HOG 采用了统计的方式(直方图)进行提取. 其基本思路是将图像局部的梯度统计特征拼接起来作为总特征. 局部特征在这里指的是将图像划分为多个Block, 每个Block内的特征进行联合以形成最终的特征.1.将图像分块: 以Block 为单位, 每个Block以一定的
  4.1 Feature Extractorclass radiomics.featureextractor.RadiomicsFeaturesExtractor(*args, **kwargs)特征抽取器是一个封装的类,用于计算影像组学特征。大量设置可用于个性化特征抽取,包括:需要抽取的特征类别及其对应特征;需要使用的图像类别(原始图像/或衍生图像);需要进行什么样的预处理
经验模态分解(Empirical Mode Decomposition, EMD) 优点:能够对非线性、非平稳过程的数据进行线性化和平稳化处理,且经分解后的函数彼此正交,理论上互不相关,从而尽可能多的保留原始数据基本特征。计算步骤:通过计算原序列 Y(t) 的上下包络线的“瞬时平衡位置”,提取内在模函数(IMF)。原序列减去该内在模函数后得到的序列作为新的原序列重复计算,如此依次提取出N
另外加了些自己的理解一、原理:Sift算法的优点是特征稳定,对旋转、尺度变换、亮度保持不变性,对视角变换、噪声也有一定程度的稳定性;缺点是实时性不高,并且对于边缘光滑目标的特征提取能力较弱。  Surf(Speeded Up Robust Features)改进了特征提取和描述方式,用一种更为高效的方式完成特征提取和描述。二、Surf实现流程如下:1. 构建Hessian(黑塞矩阵
介绍FPN是一种利用常规CNN模型来高效提取图片中各维度特征的方法。在计算机视觉学科中,多维度的目标检测一直以来都是通过将缩小或扩大后的不同维度图片作为输入来生成出反映不同维度信息的特征组合。这种办法确实也能有效地表达出图片之上的各种维度特征,但却对硬件计算能力及内存大小有较高要求,因此只能在有限的领域内部使用。FPN通过利用常规CNN模型内部从底至上各个层对同一scale图片不同维度的特征表达
特征工程:特征提取前言1. 特征提取1.1 定义1.2 特征提取API2. 字典特征提取2.1 应用2.2 流程分析2.3 总结3. 文本特征提取3.1 应用3.2 流程分析3.3 jieba分词处理3.4 案例分析3.5 Tf-idf文本特征提取3.5.1 公式3.5.2 案例3.6 Tf-idf的重要性4. 小结 前言学习目标了解什么是特征提取知道字典特征提取操作流程知道文本特征提取操作流程
本篇blog是利用Python进行文章特征提取的续篇,主要介绍构建带TF-IDF权重的文章特征向量。 In [1]: # 带TF-IDF权重的扩展词库 # 在第一篇文档里 主要是利用词库模型简单判断单词是否在文档中出现。然而与单词的顺序、频率无关。然后词的频率对文档更有意义。因此本文将词频加入特征向量 In [2]:
类别可分离性判据特征提取与选择的共同任务是找到一组对分类最有效的特征,有时需要一定的定量准则(或称判据)来衡量特征对分类系统(分类器)分类的有效性。换言之,在从高维的测量空间到低维的特征空间的映射变换中,存在多种可能性,到底哪一种映射变换对分类最有效,需要一个比较标准。此外,选出低维特征后,其组合的可能性也不是唯一的,故还需要一个比较准则来评定哪一种组合最有利于分类。 1.可分离性判据满足的条件 从理论上讲,可以用分类系统的错误概率作为判据,选取分类系统错误(概)率最小的一组特征作为最佳特征。但在实践中;由于类条件分布密度经常是未知的,且即使已知其分布但难于用计算机实现。因此,要研究实用的判据
转载 2012-03-11 22:30:00
563阅读
2评论
首先必须知道什么是特征工程什么是特征工程特征工程是通过对原始数据的处理和加工,将原始数据属性通过处理转换为数据特征的过程,属性是数据本身具有的维度,特征是数据中所呈现出来的某一种重要的特性,通常是通过属性的计算,组合或转换得到的。比如主成分分析就是将大量的数据属性转换为少数几个特征的过程。某种程度而言,好的数据以及特征往往是一个性能优秀模型的基础那么如何提取好的特征将是本文主要内容我们将简要介绍一
原创 2021-03-04 15:09:53
730阅读
文本提取及文本向量化词频和所谓的Tf-idf是传统自然语言处理中常用的两个文本特征。以词频特征和Tf-idf特征为基础,可以将一段文本表示成一个向量。将多个文本向量化后,然后就可以运用向量距离计算方法来比较它们的相似性、用聚类算法来分析它们的自然分组。如果文本有标签,比如新闻类、军事类、财经类等等,那么还可以用它们来训练一个分类模型,用于对未知文本进行标签预测。词频将文本中每个词出现的次数按一定的
2.2 特征工程介绍2.2.1 为什么需要特征工程(Feature Engineering)2.2.2 什么是特征工程特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。 意义:会直接影响机器学习的效果。sklearn :特征工程 pandas:数据清洗、数据处理特征工程包含的内容:特征抽取/提取特征预处理、特征降维2.3.1 特征抽取/提取:机器学习算法
  • 1
  • 2
  • 3
  • 4
  • 5