面向初学者的PyTorch:使用torchvision进行语义分割1.加载模型2.加载并显示图像3.图像预处理4.Forward pass through the network5.输出6.Final Result 使用已经在COCO Train 2017数据集的子集上进行训练的FCN,该子集对应于PASCALVOC数据集。模型共支持20个类别。1.加载模型from torchvision im
转载
2023-08-10 15:09:18
142阅读
基于高精地图的定位是高精定位,脱离高精地图的高精定位是自嗨,一般而言自动驾驶的高精定位会采用传感器融合的方式,主要有GPS/DGPS(比如RTK)、IMU、摄像头、激光雷达加高清地图的组合。 多传感器融合一直是自动驾驶的难点,这里不做展开,本文想从另一个角度来辅助车辆定位,应用车道线对车辆进行
转载
2024-07-11 18:34:26
60阅读
Playwright 提供了一系列语义化定位方法,这些方法基于元素的语义角色和属性进行定位,使测试代码更易读、更稳定。本篇文章比较长~耐心学习观看。
论文链接:https://arxiv.org/pdf/2104.13188.pdfCVPR 2021 文章目录1 Background2 Movtivtion3 Related work4 Method4.1. Design of Encoding Network4.2. Design of Decoder5 Experiments5.1. Datasets5.2 Ablation Study5.
最近项目在使用云知声SDK,遇到了不少麻烦现在总结下。自己留个记录也希望能够对有用到云知声的一个帮助。。不多说了上代码啦!!一,语义识别和语音识别(在线语音识别和语义)至于本地识别就是类型不同已备注,云知声语音识别和语义识别是在一起的,这个大家使用时可注意了。语音识别我这边就直接转换成了String了,语义识别可能大家要根据自己需求去解析了。返回的是Json格式字符串首先初始化key和secret
转载
2024-04-22 09:19:01
91阅读
本文是Playwright系列第二课,详解元素定位四大核心技术:CSS选择器、文本定位、XPath和语义化定位,结合实战演示各方法应用场景。重点解析Playwright智能定位器(Locator)的独特优势——自动等待与重试机制,通过预检元素可操作性(可见/可点击)有效规避网络延迟导致的脚本失效,显著提升自动化测试稳定性。
albert-crf for SRL(Semantic Role Labeling),中文语义角色标注项目地址:https://github.com/jiangnanboy/albert_srl概述 自然语言的语义理解往往包括分析构成一个事件的行为、施事、受事等主要元素,以及其他附属元素(adjuncts),例如事件发生的时间、地点、方式等。在事件语义学(Event semantics)中,构成
转载
2023-10-07 16:53:29
236阅读
目前遇到的loss大致可以分为四大类:基于分布的损失函数(Distribution-based),基于区域的损失函数(Region-based,),基于边界的损失函数(Boundary-based)和基于复合的损失函数(Compounded)。 一、基于分布的损失函数1.1 cross entropy loss像素级别的交叉熵损失函数可以说是图像语义分割任务的最常用损失函数,这种损失会逐个检查每个
转载
2024-03-22 21:15:52
933阅读
实验四、语法分析实验 一、 实验目的(1) 编制一个语义分析程序(2) 语义分析程序是在语法分析程序的基础上进行编写的,主要任务是根据语法
转载
2023-06-28 23:19:25
340阅读
FCN论文链接:Fully Convolutional Networks for Semantic Segmentation作者代码(caffe版):https://github.com/shelhamer/fcn.berkeleyvision.orgtensorflow版参考代码:https://github.com/MarvinTeichmann/tensorflow-fcn一、什么是语义分割
Pytorch 语义分割和数据集0. 环境介绍环境使用 Kaggle 里免费建立的 Notebook教程使用李沐老师的 动手学深度学习 网站和 视频讲解小技巧:当遇到函数看不懂的时候可以按 Shift+Tab 查看函数详解。1. 语义分割(Semantic segmentation)语义分割是将图片中的每个像素分类到对应的类别:1.1 应用1:背景虚化 还有就是李沐老师上课背景全都是白色的。1.2
转载
2023-07-05 16:05:07
149阅读
论文: CTC:Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks思想: 语音识别中,一般包含语音段和对应的文本标签,但是却并不知道具体的对齐关系,即字符和语音帧之间对齐,这就给语音识别训练任务带来困难;而CTC在训练时不关心具体的唯一
转载
2023-08-16 22:12:48
256阅读
在Wiki上看到的LSA的详细介绍,感觉挺好的,遂翻译过来,有翻译不对之处还望指教。原文地址:http://en.wikipedia.org/wiki/Latent_semantic_analysis前言浅层语义分析(LSA)是一种自然语言处理中用到的方法,其通过“矢量语义空间”来提取文档与词中的“概念”,进而分析文档与词之间的关系。LSA的基本假设是,如果两个词多次出现在同一文档中,则这
转载
2024-02-27 09:28:56
80阅读
一.deeplab系列1.简述Deeplab v1网络DeepLab是结合了深度卷积神经网络(DCNNs)和概率图模型(DenseCRFs)的方法。在实验中发现DCNNs做语义分割时精准度不够的问题,根本原因是DCNNs的高级特征的平移不变性(即高层次特征映射,根源在于重复的池化和下采样)。针对信号下采样或池化降低分辨率,DeepLab是采用的atrous(带孔)算法扩展感受野,获取更多的上下文信
一、IOU--目标检测我们先来看下IOU的公式:现在我们知道矩形T的左下角坐标(X0,Y0),右上角坐标(X1,Y1); 矩形G的左下角坐标(A0,B0),右上角坐标(A1,B1)这里我们可以看到 和 在确定坐标而不确定两个矩形是否相交的情况下,为已知的常量.所以,我们只需要求解就行这里我们先来看一下水平方向上的情况: 从上述的三种情况中我们可以看出:&n
转载
2024-05-08 12:36:58
236阅读
语义分割算法汇总 记录一下各类语义分割算法,便于自己学习。 由DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation开始,在文章中,作者说明了在Cityscapes test set上各类模型的表现。如下图所示: 主流算法在PASCAL VOC2012数据集上的效果对比。1.DFANet 文章梳理了语义分割网
转载
2023-08-21 22:59:14
210阅读
近年来,智能驾驶越来越炙手可热。智能驾驶相关技术已经从研发阶段逐渐转。向市场应用。其中,场景语义分割技术可以为智能车提供丰富的室外场景信息,为智能车的决策控制提供可靠的技术支持,并且其算法鲁棒性较好,因此场景语义分割算法在无人车技术中处于核心地位,具有广泛的应用价值。 本周对经典的图像分割算法FCN进行论文解读。(Fully Convolutional Networks
转载
2024-03-20 15:42:54
78阅读
【论文复现赛】DMNet:Dynamic Multi-scale Filters for Semantic Segmentation
本文提出了动态卷积模块(Dynamic Convolutional Modules),该模块可以利用上下文信息生成不同大小的卷积核,自适应地学习图片的语义信息。该模型在Cityscapes验证集上mIOU为79.64%,本次复现的mIOU为79.76%,该算法已被P
转载
2024-04-21 09:26:57
156阅读
博主已经使用hanlp库在公司的商品图片推荐中应用到了,效果还不错,可以看一下博主之前写的博客。现在专门做一下这个hanlp库的技术实践总结。hanlp是什么呢,下面简单贴一下官网的介绍。HanLP是一系列模型与算法组成的NLP工具包,由大快搜索主导并完全开源,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点
转载
2023-07-21 15:16:02
0阅读
注:在本文中经常会提到输出数据的维度,为了防止读者产生错误的理解,在本文的开头做一下说明。 如上图,原始图像大小为5*5,经过一次卷积后,图像变为3*3。那就是5*5的输入,经过一个卷积层后,输出的维度变为3*3,再经过一个卷积层,输出的维度变为1*1,这里的5*5,3*3和1*1即为本文提到的数据的维度。1、什么是语义分割图像语义分割可以说是图像理解的基石性技术,在自动驾驶系统(具体为街景识别
转载
2023-10-12 23:36:56
202阅读