拐角       OpenCV的goodFeaturesToTrack()函数实现了一个稳健的拐角检测器。使用了Shi和Tomasi提出的兴趣点检测算法。更多关于该函数的内部原理可以从此文档页面找到http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=
转载 2024-04-01 19:38:07
220阅读
图像增强是一种通过对图像进行处理以改善其质量、对比度、清晰度等方面的技术。在OpenCV中,有多种图像增强的方法和函数可用。下面简要介绍一些常见的图像增强方法及其在OpenCV中的实现方式。直方图均衡化(Histogram Equalization):直方图均衡化是一种通过调整图像的像素值分布来增强图像对比度的方法。它利用图像的像素直方图,将像素值重新映射到一个更均匀的分布上。在OpenCV中,可
画图import numpy as np import cv2 import matplotlib.pyplot as plt # 显示图片 def show(image): plt.imshow(image) plt.axis('off') plt.show() # 画直线;image:在该图像上绘制直线;(0, 0):直线起点; (300, 300):直线终点; gr
## Java OpenCV消除反光的实现教程 在计算机视觉领域,反光图像处理中的一个常见问题。反光通常由于光线反射而产生,会影响图像的质量。在这篇文章中,我们将学习如何使用Java和OpenCV消除图像中的反光。本文将介绍整个工作流程,并提供相应的代码和详细注释,以帮助您理解每一步的目的。 ### 整体流程 以下是消除反光的整体流程: | 步骤 | 描述
原创 10月前
72阅读
总述问题:现在手上有两幅图像,我们希望把这两副图像进行在图像的公共区域内进行拼接,该如何实现?图像拼接算法大概步骤:使用特征点检测算法计算出特征和特征描述符; - 特征点检测算法有:sift surf orb fast lbp等 - 这些算法都同属于一个父类,并且父类的方法里有:creat()、detectAndCompute()直接调用进行图像匹配 - 图像匹配算法里有BFMatcher(暴力
本发明涉及图像处理领域,特别涉及到一种自动校直的图像拼接方法。背景技术::图像涉及到人们生活工作的各个领域。随着计算机相关领域的飞速发展,数字图像处理的应用价值被许多专家学者发现,其应用领域也在不断的壮大。数字图像处理作为一门富有前景的交叉性学科,吸引了很多来自其他科学领域的研究者参与其中,并在基础研究和工程实践中应用广泛。图像拼接技术是数字图像处理中不可或缺的一个关键分支,近年来,伴随着计算机视
inpaint图像修复利用inpaint函数进行图像修复。函数原型:CV_EXPORTS_W void inpaint( InputArray src, InputArray inpaintMask, OutputArray dst, double inpaintRadius, int flags );InputArray src 表示要修复的
目录任意角度旋转:任意方向翻转缩放加噪(两种方法)去噪(四种方法)亮度均匀与反色全程opencv+vs很多都是opencv封装的库函数拼凑一下,调调参就出了程序设计毒瘤课任意角度旋转:原理可以参考(63条消息) 经验 | OpenCV图像旋转的原理与技巧_小白学视觉的博客#include<bits/stdc++.h> #include<opencv2/opencv.hpp>
目录一,背景二,准备工作三,图片分析1,颜色分析2,颜色对应3,定位四,完整代码一,背景我已经做出一个程序,输入颜色就可以给出答案。这几天在学opencv,一下子就想到,程序直接读颜色就不用手动输入了,而且这个应用比较简单,用来自学练手也很合适。二,准备工作1,opencv入门Opencv2,给游戏换个最朴素的背景,降低处理难度。三,图片分析1,颜色分析首先看下图片颜色够不够纯,单通道能不能很
简介消失点的定义:消失点是透视图图像平面上的一个,三维空间中相互平行的线的二维透视投影(或图形)似乎会聚。图像中的所有东西似乎都汇聚在一个上,这个被称为消失点。如上图所示,右侧图像中心的“红点”是图像的消失点。让我们尝试使用OpenCV、Python和C++来找出图像中的这个消失点。解决步骤第一步,我们将找到图像中的所有线条,线条应该至少有几个像素长。第二步,我们将过滤这些找到的直线,过滤将
一、边缘检测边缘(edge)是指图像局部强度变化最显著的部分。主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础。图像强度的显著变化可分为:阶跃变化函数,即图像强度在不连续处的两边的像素灰度值有着显著的差异;线条(屋顶)变化函数,即图像强度突然从一个值变化到另一个值,保持一较小行程后又回到原来的值。图像的边缘有方向和幅度两个属性,沿
1.图像噪声#图像噪声 ‘’’ 由于图像采集,处理,传输,过程中不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理. 常见的图像噪声有高斯噪声,椒盐噪声等 ‘’’#椒盐噪声 ‘’’ 椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点, 可能是亮的区域有黑色像素,或在白色区域有黑色像素(或者两者皆有).椒盐噪声的成因可能 是影像讯号受到突如其来的强烈干扰而产生,
转载 2月前
415阅读
        摸索了两天,终于把等高线效果做出来了,摸索的过程也有记录的意义。下面开始。        等高线滤镜有色阶、较低、较高三个控制项,根据PS书籍记载,选择"较低"选项时将在基准亮度以下的轮廓上产生等高线,反之,在基准亮度以上的轮廓上产生等高线,这里的基准亮度就是指色阶。根据描述,可知这里进行了阈值处理,可
车道线检测 c++ 实现完整代码及车道线数据链接: github:https://github.com/xuzf-git/lane_detection_by_DIP 1、主要内容使用数字图像处理的基本方法,构建一个车道线检测模型。该模型可以识别图像中所有的车道线,并得到完整的车道线信息。模型在tuSimple Lane Dataset大小为100的数据子集进行了测试,达到了较好的结果。本文专注于体
图像平滑是一种区域增强算法,在图像产生、传输和复制的过程中,会因为多方面原因而产生噪声(某一像素与周围像素相比有明显不同)或丢失数据,因而图像的质量会降低。此时就需要对图像进行一定的增强处理,以降低图像质量带来的影响图像噪声图像噪声使得图像模糊,甚至淹没图像特征,造成分析困难。常见的噪声分类:产生原因: 外部噪声、内部噪声统计特征: 平稳噪声 非平稳噪声幅度分布: 高斯噪声 椒盐噪声噪声频谱:
转载 2024-03-24 09:08:54
300阅读
函数 文章目录函数一、图像处理函数二、其他函数三、OCR 一、图像处理函数图像基本处理cv2.imshow(name,img)name:窗口名称 ;img :窗口内容cv2.waitkey(timeout)显示图片时间timeout,单位为ms,0代表一直显示 if cv2.waitKey(100) & 0xFF == 27: # 27是esc键 breakcv2.desto
转载 2024-04-03 07:43:22
82阅读
相机标定步骤输入一系列三维和它们对应的二维图像。1、在黑白相间的棋盘格上,二维图像很容易通过角点检测找到。2、而对于真实世界中的三维呢?由于我们采集中,是将相机放在一个地方,而将棋盘格定标板进行移动变换不同的位置,然后对其进行拍摄。所以我们需要知道(X,Y,Z)的值。但是简单来说,我们定义棋盘格所在平面为XY平面,即Z=0。对于定标板来说,我们可以知道棋盘格的方块尺寸,例如30mm,这样我
转载 2024-04-16 13:37:29
317阅读
introduce主流方法两种消除运动模糊的技术,一个叫做Coded Exposure Photography(编码曝光),确切的说是一种利用了Flutter Shutter(震颤快门)的编码曝光技术。多用于全局模糊。 另外一种则是Motion Invariant Photography(运动不变摄影)。多用于局部运动物体模糊。运动模糊的基本模型一个典型的场景,这里面背景和部分物体是固定的,但有一
前面介绍里面,我有写过对于图像的平滑处理的几种方法: 归一化滤波,高斯模糊,中值滤波,双边滤波。 接下来,一一介绍里面参数的含义,以及自己做出的一些总结,还有上篇里面说的关于进度条数值不变的原因。在开始讲图像平滑处理之前,我们有必要了解下什么是图像噪声: 图像噪声:引起较强视觉效果的孤立像素或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是
 光流(optic flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了。因为这种视觉现象我们每天都在经历。 从本质上说,光流就是你在这个运动着的世界里感觉到的明显的视觉运动 (呵呵,相对论,没有绝对的静止,也没有绝对的运动)。例如,当你坐在火车上,然后往窗外看。你可以看到树、地面、建筑等等,他们都在往后退。这个运动就是光流。而且,我们都会发现
  • 1
  • 2
  • 3
  • 4
  • 5