文章导读:熵联合熵和条件熵互信息相对熵交叉熵困惑度模拟信道模型最近在看《统计自然语言处理》,觉得第二章预备知识里的关于信息论的一些基本概念总结得很不错。虽然对于熵这个词,我接触过很多次,在机器学习里的很多地方也都有涉及到,比如说最大熵模型,决策树训练时的互信息等等。但是有的时候我还是会经常搞混淆,这里简单介绍一下常用的概念。一. 熵对于离散变量\(X\), 假设其取值空间为\(R\),其概率分布为
转载
2024-10-28 22:12:24
57阅读
在代理和环境之外,强化学习系统一般有四个主要元素:一个策略,收益信号,价值函数,和一个可选的环境模型。 策略定义了学习代理在给定时间内的行为方式。简单来说,政策是从环境到在这些状态下采取的行动的映射。它符合心理学中所谓的一系列刺激反应规则或关联。在某些情况下,策略可能是一个简单的函数或查找表,而在其他情况下,它可能涉及到大量的计算,如搜索过程。该策略是
本文提出基于可移除变量的递归因果发现框架,通过减少条件独立性测试次数和问题规模来提升效率,并发布高效Python实现工具包RCD。
《推荐系统中的大模型因果发现与推断》关键词推荐系统大模型因果推断数据隐私模型解释性冷启动问题摘要本文旨在探讨推
信号的线性、时不变特性以及稳定性等都相对而言比较好理解,每每到了因果这一块,总是让人费解。于是今天总结一番,扫清这个学习过程中的障碍!因果关系:从系统的因果性来看,输入(激励)是输出(响应)的原因,输出是输入的结果。
原创
2021-08-20 15:04:46
5347阅读
信号的线性、时不变特性以及稳定性等都相对而言比较好理解,每每到了因果这一块,总是让人费解。于是今天总结一番,扫清这个学习过程中的障碍!因果关系:从系统的因果性来看,输入(激励)是输出(响应)的原因,输出是输入的结果。因果信号:借助“因果”这一关系,我们称在t=0之后对系统产生影响的信号为因果信号,换句话说,t<0时,信号取值为0的信号为因果信号。因果信号的性质:因果信号作...
原创
2022-04-14 14:29:46
8703阅读
用图解的方法表示输入的各种组合关系,写出判定表,从而设计相应的测试用例。简介编辑从用自然语言书写的程序规格说明的描述中找出因(输入条件)和果(输出或程序状态的改变),可以通过因果图转换为判定表。因果图法即因果分析图,又叫特性要因图、石川图或鱼翅图,它是由日本东京大学教授石川馨提出的一种通过带箭头的线,将质量问题与原因之间的关系表示出来,是分析影响产品质量的诸因素之间关系的一种工具。作用编辑因果图法
Causality Problems(相关不一定是因果):伪关系:Y和X只是恰巧同时发生,实际上没有明显的逻辑上的关联,如巧克力销量和诺奖得主数量遗漏变量偏差:存在既影响X也影响Y的混淆变量,如年龄混淆了年收入和罹患癌症几率之间的关系幸存者偏差:部分样本没有被收集到反向因果联立性偏差因果分析的核心:identification:将因果关系从关联中分割estimation:计算因果关系的大小infe
转载
2024-01-17 12:20:46
56阅读
机器学习与因果推断Chapter 1:the introduction of Causal ReasoningIntroduction机器学习算法越来越多的被应用到生活的方方面面,其中很大一部分学者尝试应用在医疗、教育、管理、金融和农业等社会关键领域。然而在这些领域基于机器学习而做出的判断或者决策会产生广泛的影响。这意味着,如果想要真正的理解(机器学习)系统所做出的判断或者决策,必须要抓住其本质。
转载
2024-01-10 17:24:46
129阅读
因果卷积(causal)与扩展卷积(dilated)之An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modelingauthor:gswycf 最近在看关于NLP(自然语言处理)方面的文章,(其实不是自己要看),anyway,看了一个“An Empirical Evalua
转载
2023-12-15 09:38:29
155阅读
求因果方法因果方法1) 原因和结果:事物现象之间都是互相联系、互相依赖、互相制约的。如果某个现象的存在必然引起另一个现象的发生,那么这两个现象之间就具有因果联系。其中,引起某一现象产生的现象叫做原因,而被灵异现象引起的现象叫做结果。2) 因果关系的特点: ①. 时间先后性:原因和结果在时间上前后相继的。原因总是在结果之前,结果总是在原因之后。但前后相继只是因果关系的必要条件,不是充分条件。若只
转载
2024-07-11 20:46:12
51阅读
信号与系统https://www.icourse163.org/course/XDU-483006西安电子科技大学一、信号与系统概述信号的基本概念和分类1.信号的分类:确定与随机,连续与离散确定信号:可用确定时间函数表示的信号随机信号:信号不能用确切的函数描述,只可能知道它的统计特性比如概率连续时间信号:连续时间范围有定义的信号离散时间信号:仅在一些离散的瞬间才有定义的信号2.信号的分类:周期与非
转载
2023-09-14 17:13:07
786阅读
因果模型一:因果模型入门综述一. 为什么要研究因果模型?二. 因果研究的发展历程1. C.G. Hempel 1984——因果研究的分水岭2. 统计相关性模型3. 虚假原因三、INUS条件四、贝叶斯网络1. 有向无环图2. DAG的因果马尔可夫性质3. 联合概率密度4. 贝叶斯网络的局限五、结构方程模型(SEM)六、介入算子(do calculus)1. 概念2. 介入算子-马尔科夫性质 一.
转载
2023-08-16 11:13:55
45阅读
CNN通过上面的动态图片可以很好的理解卷积的过程。图中绿色的大矩阵是我们的输入,黄色的小矩阵是卷积核(kernel,filter),旁边的小矩阵是卷积后的输入,通常称为feature map。从动态图中,我们可以很明白的看出卷积实际上就是加权叠加。同时,从这个动态图可以很明显的看出,输出的维度小于输入的维度。如果我们需要输出的维度和输入的维度相等,这就需要填充(padding)。在tensorfl
转载
2023-11-15 14:19:01
2251阅读
因果模型三:因果模型在解决哪些实际问题一、因果模型研究架构图二、因果模型的应用实例1、医学领域2、商业领域 通过前两篇因果模型文章,我们对因果模型的发展历程和这个研究领域的常用工具都有了一个初步认识,也通过LiNGAM这样一个具体的算法模型对如何把探究因果问题抽象化为数学问题并求解的过程有了一个较为深入的了解。调研至此,在继续深入下去之前,我认为有必要先回答这样两个问题:第一,因果模型研究这个领
转载
2023-11-13 21:37:09
228阅读
CausalFormer是一种新型可解释Transformer模型,由因果感知Transformer和基于分解的因果检测器组成。它通过多核因强大工具。
因果系统:系统的输出仅与当前与过去的输入有关,而与将来的输入无关的系统。因此,因果系统是“物理可实现的”。线性时不变系统: 线性:输出随着输入线性变化,即输入乘以k倍,输出同样也乘以k倍。 时不变:输出仅与输入相关,与系统状态无关。线性时不变系统不一定是因果系统,因果系统也不一定是线性时不变系统。实际的物理可实现系统均为因果系统。非因果系统在后
转载
2023-10-13 00:01:05
123阅读
一、因果图概述因果图是从需求中找出因(输入条件)和果(输出或程序状态的改变),通过分析输入条件之间的关系(组合关系、约束关系等)及输入和输出之间的关系绘制出因果图,再转化成判定表,从而设计出测试用例的方法。该方法主要适用于各种输入条件之间存在某种相互制约关系或输出结果依赖于各种输入条件的组合时的情况注意:1)所有的输入输出条件的相互制约关系以及组合关系2)输出结果对输入条件的依赖关系。也就是什么样
转载
2023-10-12 20:23:56
452阅读
目录一、因果推断介绍1.1 什么是因果推断1.2为什么研究因果推断1.3因果推断阶梯1.4因果推断问题分类二、因果推断理论框架2.1 定义(这些定义后面会经常用到)2.2 Assumptions(三大基本假设)三、因果效应估计3.1 因果效应问题定义3.2 消除偏差方法3.2.1 倾向性得分匹配3.2.2 双重机器学习 3.2.3 双重稳健学习3.3估计因果
转载
2024-04-18 19:35:05
235阅读
因果推断主要有两个理论框架:以Donald Rubin为代表的潜在结果(Potential Outcome, PO)框架,和以Judea Pearl为代表的图模型(Graphical Models, GM)框架。基本概念相关性(correlation)和因果关系(causality)机器学习(这里主要指有监督学习)的目标是给定x,预测y,得到的是x和y之间的相关关系,而不是因果关系。内
转载
2024-01-10 20:44:23
336阅读