c#的语言基础小知识有关字符串的小知识只有字符串常量才有字符串池,stringBuilder 可变字符串,stringBuilder s = new stringBuilder(10);//开辟容纳10个数据空间的 频繁修改字符串(3次以上)就用stringburilder,stringbuilder主要是可以扩容。但是,string也有比stringbuilder好的地方 string比str
三十一:向量的点乘、叉乘以及归一化的意义?1.点乘描述了两个向量的相似程度,结果越大两向量越相似,还可表示投影2.叉乘得到的向量垂直于原来的两个向量3.标准化向量:用在只关系方向,不关心大小的时候三十二:为何大家都在移动设备上寻求U3D原生GUI的替代方案不美观,OnGUI很耗费时间,效率不高,使用不方便三十三:请简述如何在不同分辨率下保持UI的一致性NGUI很好的解决了这一点,屏幕分辨率的自适应
转载
2024-04-12 19:50:17
161阅读
数据预处理均值减法它对数据中每个独立特征减去平均值,从几何上可以理解为在每个维度上都将数据云的中心都迁移到原点。#numpy
X -= np.mean(X, axis=0)归一化是指将数据的所有维度都归一化,使其数值范围都近似相等。在图像处理中,由于像素的数值范围几乎是一致的(都在0-255之间),所以进行这个额外的预处理步骤并不是很必要。X /= np.std(X, axis=0)。PCA和白化
转载
2024-06-18 15:36:25
80阅读
一、点积(又称“数量积”、“内积”)
1、理论知识 向量的点积,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。在数学中,点积的定义为a·b=|a|·|b|cos<a,b> 【注:粗体小写字母表示向量,<a,b>表示向量a,b的夹角,取值范围为[0,π]】。从定义上,
转载
2024-07-08 14:28:23
104阅读
一、数据归一化数据归一化(Normalize)数据归一化的意义在于,如果每个特征的差别非常大,那么机器学习在训练过程中,会花费非常大的时间。所以需要对特征进行数据归一化,就是把所有特征向量的范围在一定内,比如都在[0,1]之间。 最大值/最小值归一化x=x-min/(max-min) 这样可以把每个特征的缩放到[0,1]范围内df[col].min()就是对这一列求最小值 df[col].max(
转载
2023-09-21 09:53:02
338阅读
作者:老猪T_T
归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,且sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理
转载
2023-08-03 10:22:06
286阅读
目录 BN的由来
BN的作用
BN的操作阶段
BN的操作流程
BN可以防止梯度消失吗
为什么归一化后还要放缩和平移
BN在GoogLeNet中的应用
参考资料
BN的由来BN是由Google于2015年提出,论文是《Batch Normalization_ Accelerating Deep Network Training by Reducing Int
转载
2023-08-23 16:22:54
166阅读
Batch Normlization BN的计算是要受到其他样本影响的,由于每个batch的均值和方差会由于shuffle的设置而变动,所以可以理解为一种数据增强的方式。但是,对于单个数据而言,相当于是引入了噪声。所以BN适用于每个mini-batch比较大,数据分布比较接近。Layer Normalization LN 针对单个训练样本进行,不依赖于其他数据,因此可以避免 BN 中受 mini-
转载
2023-10-17 13:33:02
232阅读
文章目录前言1.目的2.原理3.本质4.效果[3]5.BN有效的原因6.BN的副作用参考文献 前言批量归一化(Batch Normalization),由Google于2015年提出,是近年来深度学习(DL)领域最重要的进步之一。该方法依靠两次连续的线性变换,希望转化后的数值满足一定的特性(分布),不仅可以加快了模型的收敛速度,也一定程度缓解了特征分布较散的问题,使深度神经网络(DNN)训练更快
转载
2023-08-09 16:46:25
179阅读
归一化方法(Normalization Method) 1。 把数变为(0,1)之间的小数 主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。 2 。把有量纲表达式变为无量纲表达式 归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。 比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 +
转载
2024-05-15 14:16:59
106阅读
定义什么是归一化?归一化是一种缩放技术,其中对值进行移位和重新缩放,以使它们最终在0到1之间变化。这也称为“最小-最大”缩放。这是归一化的公式: 在这个公式中,Xmax和Xmin分别是特征的最大值和最小值。当X的值为列中的最小值时,分子将为0,因此X’为0 另一方面,当X的值为列中的最大值时,分子等于分母,因此X’的值为1 如果X的值介于最小值和最大值之间,则X’的值介于0和1之间什么是标准化?标
转载
2023-08-09 17:09:03
486阅读
数据处理Normalize 归一化 & regularzation正则化在看代码时候,经常会看到normalize的部分,之前一直不太关注,因为不是所有论文代码都有这部分处理,之前自己没仔细看,现在想想 应该是再 utils里面 的 normalize 对 特征矩阵进行 了归一化(行或者列)。有关正则化的一个博文
1. 正则化 通过对参数施加,避免过拟合L0范数 稀疏 Lasso回归 L0
转载
2023-10-08 19:56:18
623阅读
数据标准化/归一化normalization 这里主要讲连续型特征归一化的常用方法。离散参考[数据预处理:独热编码(One-Hot Encoding)]。基础知识参考:[均值、方差与协方差矩阵 ][矩阵论:向量范数和矩阵范数 ]数据的标准化(normalization)和归一化
转载
2024-05-23 07:12:21
69阅读
常用的Normalization方法主要有:Batch Normalization(BN,2015年)、Layer Normalization(LN,2016年)、Instance Normalization(IN,2017年)、Group Normalization(GN,2018年)。它们都是从激活函数的输入来考虑、做文章的,以不同的方式对激活函数的输入进行 Norm 的。 我们将输入的 fe
转载
2024-07-17 16:25:52
94阅读
数据的归一化是数据预处理中重要的的一步,很多种方法都可以被称作数据的归一化,例如简单的去除小数位,而更高级归一化技术才能对我们训练有所帮助,例如 z-score 归一化。目录一、归一化基本知识点(一)什么是归一化(二)为什么要归一化(三)为什么归一化能提高求解最优解的速度 (四)归一化类型(五)不同归一化的使用条件 (六)归一化与标准化的联系与区别二、归一化使用条件
转载
2023-09-20 21:24:25
577阅读
当我们需要对多个指标进行拟合、作图、相干性分析等操作时,如果不同指标之间的量级差距过大会直接影响最终结果,因此我们需要对数据归一化处理,结束后还可以反归一化处理回到真实值。下面介绍matlab中的归一化函数mapminmax的实用操作:mapminmax函数是按行操作的,输入数组如果是一维的,需要是行向量,如果是二维的,则按行归一化。1. [Y,PS] = mapminmax(X,Ymin,Yma
转载
2023-06-02 14:31:40
603阅读
在此所说的归一化是指对特征的每一维度分别做归一化. 这里的归一化又称为标准化.SVM是线性分类器,貌似不对特征做归一化并不会对最终的实验结果产生较大影响. 可是在实验中可发现, 如果不同维特征量级相差过大,我们很可能会得到很差的测试结果. 有些人的看法很不错,认为在机器学习中对特征做归一化目的有: 1,避免训练得到的模型权重过小,引起数值计算不稳定; 2,使参数优化时能以较快的速度收敛. 归一
转载
2023-11-06 16:24:36
189阅读
此文参考定义上的区别归一化:将数据的值压缩到0到1之间,公式如下 标准化:将数据所防伪均值是0,方差为1的状态,公式如下: 归一化、标准化的好处:
在机器学习算法的目标函数(例如SVM的RBF内核或线性模型的l1和l2正则化),许多学习算法中目标函数的基础都是假设所有的特征都是零均值并且具有同一阶数上的方差。如果某个特征的方差比其他特征大几个数量级,那么
转载
2023-08-22 08:56:55
358阅读
python 归一化、反归一化、标准化、反标准化、python输出数据显示不完全怎么解决 文章目录python 归一化、反归一化、标准化、反标准化、python输出数据显示不完全怎么解决前言1、最大值归一化、反归一化2、线性函数归一化、反归一化3、均值方差标准化、反标准化4、torchvision框架 transform5、python输出数据显示不完全怎么解决6、总程序总结 前言# 我这里用的数
转载
2023-08-05 11:00:01
480阅读