1 Numpy运算速度上的优势在这里我们通过一段带运行来体会到Numpy的好处import random import time import numpy as np a = [] for i in range(100000000): a.append(random.random()) t1 = time.time() sum1=sum(a) t2=time.time() b=np.ar
内心独白对于一个完全小白而言,突然跨进这个领域很迷茫。就像关进瓶子里的猫,前途一片光明,却找不到出口。tensorflow简单介绍tensorflow是由google开发,在2019年春发布了2.0版本。与1x版本相比tensorflow2.0版本有了很大的改变,更方便开发人员上手。 与facebook的PyTorch相比两者不相上下,但由于tensorflow 1x版本存在许多弊端,许多人更喜欢
在前面我们测试过一个例子,这个例子不知道你是否还记得它的内容,如果没有记得也没有关系,现在到我们去研究这个例子的时候了,它的前两行是这样写的:1. import tensorflow as tf 2. import numpy as np如果你的python还是不懂,强烈建议先学习一下 课程,这样会跟上我们的进度的。在这两行代码里,第一行代码就是导入(import)顶顶大名的tensorflo
鉴于tensorflow目前正在更新2.0版本,博主对博客也新增了适用于2.0版本动态度转换方法,更新于 --2019//09//29图1 numpy 图2 tensorflow - 问题描述在我们使用TensorFlow进行深度学习训练时,很多时候都是与Numpy数据打招呼,例如我们csv或者照片数据等。 但是我们都知道,TensorFlow训练时都是使用Tensor来存储变量的,并且网络输出的
 Tensor 数据类型在介绍 Tensor 数据之前,先介绍两种 Python 常用的数据结构,并解释,为什么做深度学习不用这些数据结构,而是要用 Tensor。List : Python中最常用的数据结构,以 [ ] 括起来,如 [1, 1.1, ‘hello’, ‘(1,2)’, layers] ,缺点是储存图片占用内存非常大,读写图片数据效率低。np.array : 存成一个静态
Tensorflow 1.2 tensorflow里面的tensor在tensorflow 里面,所有的数据都是以张量tensor的形式存在的。张量其实就是n维矩阵的抽象。一维的张量是向量,二维的张量是矩阵。tensorflow的数据类型tensorflow 可接受python自带的数据类型Tensorflow可以接受python数值,布尔值,字符串或由它们构成的列表。单个数值将被转化为标量,数值
Numpy基础数组基础在学习tensorflow之前我们先要了解一些numpy的使用方法,因为在tensorflow使用中初期的数据一般都是由numpy来处理的。 首先我们要知道numpy主要是用来进行高维数组运算的,其实我们使用python的内置list列表数据类型,也可以自己完成这些操作,但缺点也特别的明显,一个就是编码比较复杂,完成一个简单的功能需要编写较多的代码,而用numpy可能就是一句
转载 2023-11-17 10:45:48
225阅读
numpy_input_fn 以及队列性质该函数的作用是从numpy的输入数据中,产生读取的featrueslabels数据。这样当我们在使用numpy的数据作为输入的时候就很方便。对于所有的input来说,都是要建立队列来进行读入,所以对于队列的处理就会比较麻烦,而numpy_input的数据将这些对队列的输入封装在一起方便了我们使用.import tensorflow as tf impor
转载 2024-07-23 15:12:27
362阅读
Tensorflow与cuda版本关系(附加多个cuda版本安装)多说一句1.windows如果,在网上down的代码用的tf的版本与你本机cuda不一致的话,可以在本机安装多个cuda版本,到时候再根据你自己的项目来选择使用哪个版本的cuda(就我本机win10为栗子) 1.安装cuda,这一步在网上太多教程,随便找个就行(cuda安装教程(windows)) 2.一般来说,如果cuda默认安装
菜鸟学TensorFlow 2.0:TensorFlow2.0安装与环境配置1. TensorFlow概述2. TensorFlow依赖环境搭建3. TensorFlow 2安装3. 第一个TensorFlow程序 1. TensorFlow概述Tensorflow是当今深度学习很流行的一个框架,它是由谷歌开发的深度学习框架到现在已经发布到了TF2.0版本了。TensorFlow 2 废弃了大量
转载 2024-05-14 07:31:10
34阅读
TensorflowPytorch的区别:PyTorch TensorFlow 都是开源机器学习库,但两者之间存在一些关键差异:1 易用性:PyTorch 被认为更易于使用且具有更直观的界面,而 TensorFlow 更复杂且学习曲线更陡峭。2 动态计算图:PyTorch 使用动态计算图,这允许更大的灵活性更快的开发,而 TensorFlow 使用需要在模型运行之前定义的静态计算图。3 性
转载 2023-08-10 18:21:48
256阅读
ATI NVIDIA CUDA opencl directCompute
原创 2021-12-23 15:36:43
137阅读
传说中的Tensorflow终于支持windows了,下面介绍一下Win10下Tensorflow的安装与使用 准备工作: 1.python3.5(64位)目前Tensorflow只支持64位python3.5以上版本 下载链接: https://www.python.org/ftp/python/3.5.3/python-3.5.3rc1-amd64.exe 2.安装numpy python3
Tensorflow2.0—YOLO V4-tiny网络原理及代码解析(三)- 损失函数的构建YOLO V4中的损失函数与V3还是有比较大的区别的,具体的可以看YOLOV4与YOLOV3的区别。 代码是在nets文件夹下面的loss.py文件中,在train.py中引用的是:model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_l
tensorflow基本操作tensorflow常见属性:每个变量都有一个device的属性,可以在创建的时候设定是在cpu上运行还是在gpu上运行;tensornumpy可以互相转换with tf.device("cpu"): a = tf.constant(1) # 在cpu上 with tf.device("gpu"): b = tf.constant(1) # 在gpu
文章目录tensorflow2.0学习记录多维数组创建Numpy数组创建数组数组的属性创建特殊的数组数组运算数组间的运算数组元素间的运算数组的堆叠矩阵随机数矩阵的运算随机数感谢观看 多维数组纸上的一个点、一条线是一维空间的物体,由无数条线组合成的一张理想的不计厚度的纸属于二维空间的物体,我们人类所处的世界是三维空间…在python中,我们可以用数组来对不同维度的事物进行描述。 通常在机器学习中
说到机器学习、大数据,大家听到的是 Hadoop Spark 居多,它们跟 TensorFlow 是一个什么样的关系呢?是不是有 TensorFlow 就不需要 Spark 这些?     像 Hadoop 跟 Spark,背后都是 MapReduce。Hadoop 更多是去写文件,Spark 更多是通过内存。它们通过 MapReduce,下发 task 给这些
1、功能不同Scikit-learn(sklearn)的定位是通用机器学习库,而TensorFlow(tf)的定位主要是深度学习库。一个显而易见的不同:tf并未提供sklearn那种强大的特征工程,如维度压缩、特征选择等。究其根本,我认为是因为机器学习模型的两种不同的处理数据的方式:传统机器学习:利用特征工程(feature engineering),人为对数据进行提炼清洗深度学习:利用表示学习(
转载 2024-03-26 15:29:31
91阅读
YOLOv3代码详解:一、预测过程:1.网络结构的定义: 网络最后得到的detect_1,detect_2,detect_3.三个尺度的形状分别为:[1, 507(13X13X3), 5+c]、[1, 2028, 5+c]、[1, 8112, 5+c]其中Yolo_block是一个正常卷积(不改变图像大小)组成的模块,生成routeinputs两个结果,route 用于配合下一个尺度
# Spark与TensorFlow区别:初学者指南 在进入大数据深度学习领域时,SparkTensorFlow都是非常重要的工具。然而,它们在设计理念、应用场景使用方式上有着显著区别。本文将帮助你了解这两个框架之间的差异,并通过具体示例使你更好地掌握它们的使用场景技巧。 ### 整体流程 首先,让我们看一下分析SparkTensorFlow区别的整体流程: | 步骤 | 描
原创 2024-09-07 04:48:49
52阅读
  • 1
  • 2
  • 3
  • 4
  • 5