前言有些算法书写的很白痴,或者翻译的很白痴。我一
转载
2021-09-08 10:19:57
173阅读
点赞
1评论
OpenCV 3.3中给出了支持向量机(Support Vector Machines)的实现,即cv::ml::SVM类,
此类的声明在include/opencv2/ml.hpp文件中,实现在modules/ml/src/svm.cpp文件中,它既支持两分类,也支持多分类,还支持回归等,
OpenCV中SVM的实现源自libsvm库。其中:
(1)、cv::ml::SVM类:继承自cv::ml
转载
2024-04-16 08:29:48
29阅读
这一次主要是实践部分.首先还是贴出源码.#include<opencv2\opencv.hpp>
#include <vector>
#include<iostream>
using namespace std;
using namespace cv;
#define n 8 //n个训练样本
int main()
{
//【1】 设置
转载
2024-04-16 10:31:11
63阅读
Opencv SVM 的使用方法:
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/ml/ml.hpp>
usingnamespace cv;
int main()
{
// Data for visual represent
初始化数据 int width = 512, height = 512; Mat image = Mat::zeros(height, width, CV_8UC3); 设置训练数据 float labels[4] = {1.0, -1.0, -1.0, -1.0}; Mat labelsMat(4, 1, CV_32FC1, labels
原创
2014-03-28 13:39:00
575阅读
转载
2014-06-04 10:09:00
90阅读
2评论
✅作者简介:热爱科研的算法开发者,Python、Matlab项目可交流、沟通、学习。
?个人主页:算法工程师的学习日志简介SVM(Support Vector Machine)名为支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。相关概念分类器:分类器就是给定一个样本的数据,判定这个样本属于哪个类别。例如在天气预测中,我们认为晚上能看
推荐
原创
2022-12-08 10:23:53
1425阅读
✅作者简介:热爱科研的算法开发者,Python、Matlab项目可交流、沟通、学习。
?个人主页:算法工程师的学习日志简介SVM(Support Vector Machine)名为支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。相关概念分类器:分类器就是给定一个样本的数据,判定这个样本属于哪个类别。例如在天气预测中,我们认为晚上能看
原创
2023-09-21 08:58:37
186阅读
✅作者简介:热爱科研的算法开发者,Python、Matlab项目可交流、沟通、学习。
?个人主页:算法工程师的学习日志简介SVM(Support Vector Machine)名为支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。相关概念分类器:分类器就是给定一个样本的数据,判定这个样本属于哪个类别。例如在天气预测中,我们认为晚上能看
原创
精选
2023-03-12 15:17:00
231阅读
✅作者简介:热爱科研的算法开发者,Python、Matlab项目可交流、沟通、学习。
?个人主页:算法工程师的学习日志简介SVM(Support Vector Machine)名为支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。相关概念分类器:分类器就是给定一个样本的数据,判定这个样本属于哪个类别。例如在天气预测中,我们认为晚上能看
原创
精选
2023-05-11 09:03:49
322阅读
文章目录前言一、SVM1.1 SVM 使用类型1.2 核函数(1) 线性核(LINEAR )(2) 多项式核(3) RBF 高斯核函数(4) SIGMOID核函数(5) POLY核函数1.3 参数1.3.1 与核函数相关的参数如下1.3.2 与SVM类型选择相关的参数设置1.3.3 训练参数相关二、SVM分类问题步骤1.数据准备2.SVM模型搭建总结 前言本文主要以使用svm做图像分类为主要任务
转载
2023-08-07 19:00:31
78阅读
什么是KNN算法!在这里插入图片描述(https://s2.51cto.com/images/blog/202210/15131607_634a4217cb7a446668.png?xossprocess=image/watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_30,g_se,x_10,y_10,shadow_20,type_ZmF
推荐
原创
2022-10-15 13:22:44
1911阅读
点赞
1评论
#include "cv.h"
#include "highgui.h"
#include "stdafx.h"
#include <ml.h>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
using namespace cv;
u
转载
2016-04-17 19:46:00
187阅读
2评论
SMO算法 SVM(3) 利用SMO算法解决这个问题: SMO算法的基本思路 : SMO算法是一种启发式的算法(别管启发式这个术语, 感兴趣可了解), 如果所有变量的解都满足最优化的KKT条件, 那么最优化问题就得到了。 每次只优化两个 , 将问题转化成很多个 二次规划 的子问题, 直到所有的解都满
原创
2021-08-06 09:54:20
480阅读
关键字(keywords):SVM支持向量机 SMO算法 实现机器学习 假设对SVM原理不是非常懂的,能够先看一下入门的视频,对帮助理解非常实用的,然后再深入一点能够看看这几篇入门文章,作者写得挺具体,看完以后SVM的基础就了解得差点儿相同了,再然后买本《支持向量机导论》作者是Nello Crist...
转载
2014-12-25 10:02:00
90阅读
车牌识别的属于常见的 模式识别 ,其基本流程为下面三个步骤:1) 分割: 检测并检测图像中感兴趣区域;2)特征提取: 对字符图像集中的每个部分进行提取;3)分类: 判断图像快是不是车牌或者 每个车牌字符的分类。 车牌识别分为两个步骤, 车牌检测, 车牌识别, 都属于模式识别。基本结构如下:一、车牌检测 1、车牌局部化(分割车牌区域),根据尺寸等基本信息去除非车牌图像
转载
2023-09-03 18:07:17
455阅读
前两篇文章写了基于两种特征提取的SVM数字识别这篇文章主要是关于模型评估,即识别数字的正确率 下面代码是opencv3 c++加载的XML文件是之前代码训练好的。测试集是我的“”数字检测样本“”文件夹下的0-9个文件夹所包含的检测样本 #include <stdio.h>
#include <time.h>
#includ
转载
2024-02-19 14:35:03
97阅读
opencv3.0和2.4的SVM接口有不同,基本可以按照以下的格式来执行: ml::SVM::Params params;
params.svmType = ml::SVM::C_SVC;
params.kernelType = ml::SVM::POLY;
params.gamma = 3;
Ptr<ml::SVM> svm = ml::SVM::create(params);
转载
2024-07-26 16:40:13
249阅读
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm21.2 SVM案例介绍在使用支持向量机模块时,需要先使用函数cv2.ml.SVM_create()生成用于后续训练的空分类器模型。该函数的语法格式为:svm = cv2.ml.SVM_create( )获取了空分类器svm后,针对该模型使用svm.train()函数对训练数据进行训练,其语法
转载
2024-06-14 10:30:24
33阅读
svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变。 opencv中的svm分类代码,来源于libsvm。 结果: 如果只是简单的点分类,svm的参数设置就这么两行就行了,但如果是其它更为复杂的分类,则需要设置更多的参数。 由于opencv
转载
2016-11-15 23:57:00
134阅读
2评论