1. 集成学习概念“三个臭皮匠,顶个诸葛亮”思想 “弱可学习”等价于“强可学习” —— Schapire 可以理解为就是指采用多个分类器对数据集进行预测,从而提高整体分类器的泛化能力。 集成学习有两个流派 一个是boosting派系,它的特点是各个弱学习器之间有依赖关系。 另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合。2. 个体学习器概念又称“基学习
笔记摘自:机器学习-周志华 统计学习方法-李航 Boosting & AdaBoostBoosting 是一族可将弱学习器提升为强学习器的算法。这族算法的工作机制类似:先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本的概率分布(训练数据的权值分布)进行调整,针对不同的训练数据分布调用弱学习算法学习一系列若弱分类器。对于提升方法来说,有两个
stata绘图指令 – 潘登同学的stata笔记 文章目录stata绘图指令 -- 潘登同学的stata笔记绘图概览韦恩图折线图连线图线性拟合图直方图函数图添加特殊字符和文字 绘图概览Stata 提供的图形种类:twoway 二维图scatter 散点图line 折线图area 区域图lfit 线性拟合图qfit 非线性拟合图histogram 直方图kdensity 密度函数图function
转载
2024-05-06 23:18:44
105阅读
随机森林和提升作者:樱花猪 摘要:本文为七月算法(julyedu.com)12月机器学习第十一次次课在线笔记。随机森林和提升都是机器学习将弱分类器融合成强分类器的方法。和我们熟悉的另一种机器学习模型SVM相比,这种方法更适合于大数据并且它的计算速度要比SVM快许多。 引言Boosting这些比较受广大研究者的热爱,而曾经红得半边天的SVM不再那么主流。仔细一看,实际上随机森林我
转载
2024-05-07 09:18:29
87阅读
1.什么是随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决 策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一 类被选择最多,就预测这个样本为那一类。 我们可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们
转载
2024-03-26 11:33:08
41阅读
目录1. 基本原理2. 特征选择2.1 袋外错误率(oob error)2.2 特征重要性2.3 特征选择3. 优缺点优点缺点1. 基本原理随机森林(Random Forest,RF)是bagging算法的扩展变体,顾名思义,森林就是由多个决策树构成的算法,其基学习器为CART决策树。之所以称为随机是因为:训练样本选取随机,即每一个样本的选取都是有放回的随机选取。这样,每一颗树的训练样本几乎都不相
转载
2024-02-29 10:47:24
88阅读
1.随机森林 随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法 每棵决策树都是一个分类器(假设现在针对的是分类问题),那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集成
转载
2024-03-26 13:14:48
84阅读
一般情况下,数据集的特征成百上千,因此有必要从中选取对结果影响较大的特征来进行进一步建模,相关的方法有:主成分分析、lasso等,这里我们介绍的是通过随机森林来进行筛选。用随机森林进行特征重要性评估的思想比较简单,主要是看每个特征在随机森林中的每棵树上做了多大的贡献,然后取平均值,最后比较不同特征之间的贡献大小。贡献度的衡量指标包括:基尼指数(gini)、袋外数据(OOB)错误率作为评价指标来衡量
转载
2023-07-15 23:38:08
464阅读
Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。随机森林就是多个CARD树。 Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行分类。 随机森林算法只需要
转载
2023-05-29 15:41:11
174阅读
1 随机森林bagging的好处是降低各个子分类器的variance,而决策树又是对数据敏感的算法,variance比较大。因此我们很自然地就把bagging用到了决策树。也就是基本的随机森林算法:随机森林的好处是:(1)每棵树并行化学习,非常有效率(2)继承了CART的好处(3)弥补了决策树variance大的缺点。 扩展的随机森林(这部分没怎么听懂): 2 OOB错误在做b
转载
2024-03-17 14:04:47
113阅读
sklearn随机森林本文基于菜菜的sklearn教学@目录sklearn随机森林随机森林分类器概述引入包导入数据划分测试集和训练集核心代码特征重要性预测交叉验证参数讲解随机森林回归案例分析基础代码调参结语随机森林分类器概述随机森林是一种集成算法,即运用大量不同的算法,选出最优的一个,主要是基于决策树。引入包from sklearn.tree import DecisionTreeClassifi
转载
2023-08-13 22:28:07
159阅读
什么是随机森林?随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法。随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。“森林”我们很好理解,一棵叫做树,那么成百上千棵就可以叫做森林了,这样的比喻还是很贴切的,其实这也是随机森林的主要思想--集成思想的体现。 随机森
转载
2024-02-12 21:45:29
162阅读
随机森林(Random Forest,RF) 1、定义随机森林指的是利用多棵树对样本进行训练并预测的一种分类器随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测
转载
2024-03-14 17:43:54
150阅读
在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随机森林时,其实就是让每一颗决策树进行分类,最后取所有决策树中分类结果最多的那类为最终的结果。因此随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。随机森林可以既可以处理属性为离散值的量,如ID3算法,也可以处理属
转载
2024-02-26 06:38:48
37阅读
6.随机森林sklearn快速入门教程导言范例结论轮到你了扼要重述练习第一步:使用随机森林继续练习答案 导言决策树给你留下了一个艰难的决定。一棵长着很多叶子的大树会过度生长,因为每一个预测都来自历史数据,这些数据只来自它叶子上的少数几栋房屋。但是,一棵叶子很少的浅树将表现不佳,因为它无法在原始数据中捕捉到同样多的差异。即使是今天最复杂的建模技术也面临着这种不适和过度适配之间的紧张关系。但是,许多
转载
2024-02-22 17:53:59
101阅读
1.实验背景本次实验是Kaggle上的一个入门比赛——Titanic: Machine Learning from Disaster。比赛选择了泰坦尼克号海难作为背景,并提供了样本数据及测试数据,要求我们根据样本数据内容建立一个预测模型,对于测试数据中每个人是否获救做个预测。样本数据包括891条乘客信息及获救情况,测试数据有418条乘客信息。样本数据的样例如下:Passenger:乘客唯一识别id
转载
2024-03-19 09:21:12
62阅读
定义随机森林指的是利用多棵树对样本进行训练并预测的一种分类器。该分类器最早由Leo Breiman和Adele Cutler提出,并被注册成了商标。在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。Leo Breiman和Adele Cutler发展出推论出随机森林的算法。 随机森林是一种灵活且易于使用的机器学习算法,即便没有超参数调优,
转载
2024-05-05 06:54:44
19阅读
支持向量机(SVM)已经介绍了,讲讲随机森林(random forest,RF)。想要了解随机森林,首先要知道决策树,即森林由一棵棵树组成。决策树决策树是一种有监督的机器学习算法,该方法可以用于解决分类和回归问题。决策树可以简单地理解为达到某一特定结果的一系列决策。思考逻辑上,就像一连串的if-else,如果满足xx特征,则归为xx类别,否则则归为yy类别。(可以参考周志华老师《机器学习》里挑西瓜
转载
2024-03-17 10:43:56
134阅读
Bootstraping抽样☞ 一种有放回的抽样方法Bootstraping的名称来自于成语"pull up your own bootstraps",意为依靠你自己的资源(自助法).bootstrap指靴子后边向上拉的小环,带子."通过拉靴子让自己上升”,意思是“不可能发生的事情”。后来意思发生了转变,隐喻“不需要外界帮助,仅依靠自身力量让自己变得更好” 。Bagging 策略bootstrap
转载
2024-04-18 12:42:53
154阅读
文章目录1 概述1.1 集成算法概述1.2 sklearn中的集成算法2 、随机森林分类:RandomForestClassifier2.1 重要参数2.1.1 控制基评估器的参数2.1.2、 n_estimators,:越大,模型的效果往往越好2.1.3 random_state & estimators_2.1.4、bootstrap & oob_score2.2 重要属性和
转载
2024-04-26 14:46:49
134阅读