在本篇博文中,主要学习一下STING聚类算法。 (1) STING:统计信息网格 STING是一种基于网格的多分辨率的聚类技术,它将输入对象的空间区域划分成矩形单元,空间可以用分层和递归方法进行划分。这种多层矩形单元对应不同的分辨率,并且形成了一个层次结构:每个高层单元被划分成低一层的单元。关于每个网格单
转载
2023-09-28 01:15:20
489阅读
# 使用Python进行字符串聚类的指南
字符串聚类是数据分析和自然语言处理领域的一项重要任务。它可以帮助我们理解数据中隐藏的模式和结构。在这篇文章中,我将引导你通过一个完整的流程来实现字符串聚类。在开始之前,我们首先列出实现的步骤。
## 实现流程
| 步骤 | 描述 |
|-------------|---------------
应用场景聚类系数在学术上的应用定义可以参考 Wiki 的 Small-World-Network, 基于经典的社交 6度分隔网络为起点, 延伸来做复杂分析, 引入了过多其他的图论概念, 这里不详细描述, 感兴趣可自行了解.聚类系数在实际生产环境应用和三角计数比较相似(通常是结合选一个), 全图聚类系数可以用于判断图的稀疏, 稠密, 用得不多, 更多的是用于局部范围来分析某个点/子图的紧密
一、算法简介Affinity Propagation聚类算法简称AP,是一个在07年发表在Science上的聚类算法。它实际属于message-passing algorithms的一种。算法的基本思想将数据看成网络中的节点,通过在数据点之间传递消息,分别是吸引度(responsibility)和归属度(availability),不断修改聚类中心的数量与位置,直到整个数据集相
一、模型聚类将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其它簇中的对象相异,数学描述如下:给定一个数据样本集合X={X1,X2,,,,Xn},可以根据数据样本点之间的相似程度将它们划分成K个簇:C={C1,C2,,,,Cn},其中Xi={Xi1,Xi2,Xi3,,,,Xim}和Xj={Xj1,Xj2
转载
2024-01-20 00:02:22
142阅读
集群计算实际上不能真正地被看作是一种分布式计算解决方案。不过对于理解网格计算与集群计算之间的关系是很有用的。通常,人们都会混淆网格计算与基于集群的计算这两个概念,但实际上这两个概念之间有一些重要的区别。 网格是由异构资源组成的。集群计算 主要关注的是计算资源;网格计算 则对存储、网络和计算资源进行了集成。集群通常包含同种处理器和操作系统;网格则可以包含不同供应商提供的运行不同操作系统的机器。(I
聚类是一种涉及数据点分组的机器学习技术。给定一个数据点集,则可利用聚类算法将每个数据点分类到一个特定的组中。理论上,同一组数据点具有相似的性质或(和)特征,不同组数据点具有高度不同的性质或(和)特征。聚类属于无监督学习,也是在很多领域中使用的统计数据分析的一种常用技术。本文将介绍常见的5大聚类算法。K-Means算法K-Means算法可能是最知名的聚类算法,该算法在代码中很容易理解和实现。K-Me
转载
2024-05-11 17:34:52
134阅读
划分聚类Kmeans原理(1)任意选择k个对象作为初始的簇中心;(2)根据距离(欧式距离)中心最近原则,将其他对象分配到相应类中;(3) 更新簇的质心,即重新计算每个簇中对象的平均值;(4) 重新分配所有对象,直到质心不再发生变化 调包实现import time
import pandas as pd
from sklearn import preprocessing
da
转载
2023-07-28 13:11:42
219阅读
尽管基于划分的聚类算法能够实现把数据集划分成指定数量的簇,但是在某些情况下,需要把数据集划分成不同层上的簇:比如,作为一家公司的人力资源部经理,你可以把所有的雇员组织成较大的簇,如主管、经理和职员;然后你可以进一步划分为较小的簇,例如,职员簇可以进一步划分为子簇:高级职员,一般职员和实习人员。所有的这些簇形成了层次结构,可以很容易地对各层次上的数据进行汇总或者特征化。另外,使用基于划分的聚类算法(
转载
2024-06-28 07:38:10
98阅读
菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过程。关于KMeans算法本身就不做介绍了,下面记录一下自己遇到的问题。一 、关于初始聚类中心的选取 初始聚类中心的选择一般有:(1)随机选取(2)随机选取样本中一个点作为中心点,在通过这个点选取距离其较大的点作为第二个中心点,以此类推。(3)使用层次聚类等算法更新出初
转载
2023-07-20 14:40:48
152阅读
最近在做SOM神经网络模型的项目,之前一直在用Matlab的工具箱,一直想转成Python的代码来实现,就到处找,结果还真有SOM相关的库。
自组织地图MiniSom 是自组织映射 (SOM) 的简约和基于 Numpy 的实现。SOM 是一种人工神经网络,能够将高维数据项之间复杂的非线性统计关系转换为低维显示器上的简单几何关系。Minisom 旨在让研究人员能够轻松地在其基础上进行构建,并
转载
2023-08-05 22:51:12
0阅读
本文简要介绍了多种无监督学习算法的 Python 实现,包括 K 均值聚类、层次聚类、t-SNE 聚类、DBSCAN 聚类。无监督学习是一类用于在数据中寻找模式的机器学习技术。无监督学习算法使用的输入数据都是没有标注过的,这意味着数据只给出了输入变量(自变量 X)而没有给出相应的输出变量(因变量)。在无监督学习中,算法本身将发掘数据中有趣的结构。人工智能研究的领军人物 Yan Lecun,解释道:
转载
2023-08-23 16:16:50
124阅读
python实现k-means聚类算法不调包这里是为了记录机器学习作业写的代码,只要放入二维数据即可运行代码基本思想 举个例子: 1.假如有5个点要实现聚类:a,b,c,d,e 2.我们要选定聚几类(假设是聚两类)k=2 3.那么我们就随机选定5个点的2个点作为簇心 4.然后将每个点和簇心的欧式距离比较一遍,谁离哪个点进谁就属于哪一类 比如:(b点到A簇心的距离小于到B簇心的距离,则b属于A类)
转载
2023-10-20 23:37:39
39阅读
k-means算法原理上可以说蛮简单的,面试上也会经常问到,但一旦面试官问到如何用python写出来,有些同学可能一时半会还不知道咋下手,导致写的磕磕绊绊,影响面试体验。今个我们就来彻底学懂它!先介绍原理:
先给定样本data和聚类数k;
(1) 初始化。随机选取k个样本点作为初始聚类中心;
(2)对样本进行聚类。计算样本
到每个聚类中心的距离,将该样本指派到与
转载
2023-08-31 20:49:58
150阅读
前言在前面介绍的线性回归, 岭回归, Lasso回归, 逻辑回归均是监督学习, 下面将要介绍一种无监督学习—“聚类"目录正文“物以类聚,人以群分”, 所谓聚类就是将相似的元素分到一"类"(有时也被称为"簇"或"集合"), 簇内元素相似程度高, 簇间元素相似程度低. 常用的聚类方法有划分聚类, 层次聚类, 密度聚类, 网格聚类, 模型聚类等. 我们这里重点介绍划分聚类.1. 划分聚类划分聚类, 就是
转载
2023-09-05 19:03:34
90阅读
谱聚类(Spectral Clustering,SC)是一种基于图论的聚类方法,将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量远。能够识别任意形状的样本空间且收敛于全局最优解,基本思想是利用样本数据的相似矩阵(拉普拉斯矩阵)进行特征分解后得到的特征向量进行聚类。对于item-user矩阵,如果要将item进行聚类我们可以采用k-means聚类,复杂度为O(tknm
转载
2023-08-21 14:40:04
102阅读
K-means算法介绍 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 算法过
转载
2023-06-19 20:07:34
209阅读
k-means 聚类接下来是进入聚类算法的的学习,聚类算法属于无监督学习,与分类算法这种有监督学习不同的是,聚类算法事先并不需要知道数据的类别标签,而只是根据数据特征去学习,找到相似数据的特征,然后把已知的数据集划分成几个不同的类别。比如说我们有一堆树叶,对于分类问题来说,我们已经知道了过去的每一片树叶的类别。比如这个是枫树叶,那个是橡树叶,经过学习之后拿来一片新的叶子,你看了一眼,然后说这是枫树
转载
2023-08-20 23:25:47
175阅读
python实现层次聚类
层次聚类(Hierarchical Clustering)一.概念 层次聚类不需要指定聚类的数目,首先它是将数据中的每个实例看作一个类,然后将最相似的两个类合并,该过程迭代计算只到剩下一个类为止,类由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在聚类中每次迭代都将两个最近的类进行合并,这个类间的距离计
转载
2023-06-19 14:40:48
179阅读
阅读前提:了解K-means算法了解Python基本语句知道什么是txt文件code需要当前目录下添加一个city.txt文件。#coding=utf-8
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
#从磁盘读取城市经纬度数据
X = []
f = open('cit
转载
2023-08-30 15:09:29
100阅读