术语机器学习常常被错误互换与人工智能。实际上,机器学习是AI的一个子领域。机器学习有时也与预测分析或预测建模相混淆。同样,机器学习可用于预测建模,但这只是预测分析的一种类型,其用途比预测建模更广泛。     机器学习是计算机无需明确编程即可学习的能力  机器学习最基本的方法是使用编程算法来接收和分析输入数据,以预测可接受范围内的输出值。随着将新数据输入这些算法,他们将学习并优化其操作
# 使用 MongoDB 进行大数据分析的入门指南 在现代数据分析中,MongoDB 作为一种 NoSQL 数据库被广泛使用。它的灵活性、扩展性使其非常适合大型数据集的存储和分析。本篇文章将指导你完成使用 MongoDB 进行大数据分析的整个流程,从环境搭建到数据可视化。 ## 整体流程概述 以下是进行 MongoDB 大数据分析的主要步骤: | 步骤 | 说明
基本流程 商业理解 - 理解需求,定义目标数据理解 - 探索数据,认知数据数据准备 - 收集数据数据清洗、集成等模型建立 - 选择和应用模型,并加以优化模型评估 - 检查模型,确认模型符合目标上线发布 - 将获取的知识转化成报告或者实现数据挖掘过程商业智能BI、数据仓库DW、数据挖掘DM间的关系 商业智能(Business Intelligent,缩写BI)是基于数据仓库,经过数
基本数据类型,表的增删改查如何写 第一节:数据类型        可分为数值型(numeric)、字符串型(character string)、图形字符串(graphic string)、二进制字符串型(binary string)或日期时间型   (datetime)。还有一种叫做DATALI
转载 2023-12-22 13:54:43
57阅读
1.数据分析方法分类业务数据分析师(对数学建模的要求较低)、数据挖掘(对业务与数学建模的要求较高)、大数据分析(需要一定的编程能力)。层层进阶2.职位进阶3.数据分析结果数据可视化4.数据分析的流程在业务理解中要多问问题,了解需求,知道问题的核心。可以看书籍《学会提问》。5. 围绕数据分析师的三大类工作内容
原创 2022-04-15 21:35:17
1592阅读
当我们谈论IT服务管理(ITSM)世界中的大数据时,这里有两个非常不同的概念: • IT为业务提供的大数据工具/服务:对关键的业务运营数据进行数据索引。 • IT运营中的大数据:处理和利用复杂的IT运营数据。大数据中的业务运营服务在竞争日益激烈,数据驱动的世界中,企业管理者都在寻找能够有效管理和解释业务数据(尤其是大数据)的方法。数字化的业务操作,如:电子商务网站和银行移动APP,它们产生了大量的
转载 2023-10-03 08:52:17
206阅读
不用任何公开参考资料,估算今年新生儿出生数量 解答:1)采用两层模型(人群画像人群转化):新生儿出生数=Σ各年龄层育龄女性数量各年龄层生育比率 2)从数字到数字:如果有前几年新生儿出生数量数据,建立时间序列模型(需要考虑到二胎放开的突变事件)进行预测 3)找先兆指标,如婴儿类用品的新增活跃用户数量X表示新生儿家庭用户。Xn/新生儿n为该年新生儿家庭用户的转化率,如X2007/新生儿2007位为20
基本操作增加在MongoDB中通过db.collection.insert()来增加新的数据db.users.insert({username:"Jack",age:30})操作完成之后会返回一条WriteResult对象,这个对象包含了操作的状态。WriteResult({"nInserted" : 1 })如果插入失败,WriteResult会包含错误信息。通过 db.collection.
数据技术和数据分析有什么关系大数据经过多年发展形成了一个完整的产业链和技术链,大数据的产业链是围绕技术链来打造的,而大数据的技术链则围绕数据价值化这个中心来展开,涉及到数据的采集、存储、安全、分析、呈现和应用,那么大数据技术和数据分析有什么关系呢?1、从大数据的技术链来看:数据分析是其中的重要一环,也是目前大数据价值化的核心环节,所以很多人也把大数据就理解为数据分析了。虽然数据分析比较重要,但是
目录电影数据集介绍加载数据数据探索和清洗评分最多的电影评分最高的电影评分与年龄的关系不同年龄段对某部电影的评分电
原创 2024-05-24 10:15:23
252阅读
本实验主要目的是演示如何从原始数据获取信息。其中有些信息无法给出重要结论,而有些信息能够验证假设,增加我们对系统状态的认识,而找出
原创 2024-05-24 10:29:41
240阅读
1.1数据分析概述1.1.1数据分析的原则(1)数据分析是为了验证假设的问题,需要提供必要的数据验证。在数据分析中,分析模型构建完成后,需要利用测试数据验证模型的正确性。(2)数据分析是为了挖掘更多的问题,并找到深层次的原因。(3)不能为了做数据分析而做数据分析。1.1.2数据分析的步骤(1)探索性数据分析EDA从多种渠道获得了大量的可能杂乱无章、看不出规律的数据的时候,首先需要在没有多少经验的情
     作者:小熊妹天继续分享九大数据分析方法系列:矩阵分析法。矩阵分析法是在各路数据分析文章中,出现频率最高的词。甚至有不懂行的小白把它捧到“核心思维”,“底层逻辑”的高度。哈哈,才没有那么神呢。一、矩阵分析法是干什么的?数据分析领域,有一个简单,但非常致命的核心问题:“到底指标是多少,才算好?”为了这个问题,公司里经常吵成一团。矩阵分析法就是试图解决这
PCA(Principal Component Analysis)是常用的数据分析方法。PCA是通过线性变换,将原始数据变换为一组各维度线性无关的数据表示方法,可用于提取数据的主要特征分量,常用于高维数据的降维。1. 降维问题数据挖掘和机器学习中,数据以向量表示。例如某个淘宝店2012年全年的流量及交易情况可以看成一组记录的集合,其中每一天的数据是一条记录,格式如下:    &
转载 2024-03-14 14:46:06
92阅读
        本周小组开会,正式地对项目进行了分工,其实一开始项目计划的筹备有些仓促,这次通过讨论完全达成了一致,主要确定了以下主题。        首先,项目是准备要做pc的客户端和一个放在服务器上运行的服务端程序,大体原理和思路是这样
转载 2023-11-03 15:45:54
113阅读
本篇目录第一天I、数据分析概述II、EXCEL常用函数III、数据透视表IV、数据作图第二天I、工具辅助:项目排期表II、工具辅助:员工考勤表第三天I、数据与指标概述II、指标应用III、综合案例:员工考勤表IV、综合案例:活动评估第四天I、业务数据分析方法论II、帕累托分析III、RFM模型第五天I、树状分析方法论II、报告撰写 第一天I、数据分析概述数据分析是根据方法论的指导,使用数据分析
1、点击流数据模型  1.1、点击流概念  点击流(Click Stream)是指用户在网站上持续访问的轨迹。这个概念更注重用户浏览网站的整个流程。用户对网站的每次访问包含了一系列的点击动作行为,这些点击行为数据就构成了点击流数据(Click Stream Data),它代表了用户浏览网站的整个流程。 点击流和网站日志是两个不同的概念。点击流是从用户的角度出发,注
转载 2023-08-23 15:19:36
40阅读
在做项目做产品的过程中,作为互联网产品设计师的我们,经常会接到来自PM/领导/业务方等等的各种需求。有的时候,哪怕一个小功能、次次次级页面都会争得不可开交。这个时候怎么办呢?到底应该听谁的呢?哪个需求优先级高?哪种呈现方法是更靠谱的呢?今天我们就来聊聊一个非常实用的需求分级方法——KANO模型。一、什么是KANO模型?KANO模型是东京理工大学教授狩野纪昭(Noriaki Kano)发明的对用户需
这两天需要对预实验的脑电进行一个分类,在这里记录一下流程脑电分析系列文章mne官网mne教程随机森林分类Python 多因素方差分析 文章目录1. 脑电数据的处理1.1 基本概念1.2 实际处理1.3 全部代码2. 随机森林分类1. label的制作2. 使用随机森林进行分类3. 全部代码3. 显著性检验4. 多文件测试1. 文件选择2. 精确度分析3. anova分析4. 可扩展性1. 抽取代码
|前言本文主要分享笔者以往10年在多省、多运营商做大屏、Dashboard,以及早年在某大型房地产互联公司做数据分析的经验总结,核心是交付Dashboard过程中沉淀出的“一屏、一眼、马上干”方法。之所以重点聊数据产品中的可视化Dashboard,主要原因是这块最接近前端受众(领导)、最容易见效果;其次,这块内容通用性更强,大多产品都有需求;最后,笔者的核心领域不是数据产品,更多是在交付项目时附带
  • 1
  • 2
  • 3
  • 4
  • 5