文章目录一:几大主流backbone的效果比较二:EfficientNet1.EfficientNet网络结构2.细节描述1)Depthwise separative卷积2)SE模块3)Drop connect三:EfficientDet检测算法 一:几大主流backbone的效果比较当前主流的几大backbone,从发布时间开始排序,有VGG,Resnet, Mobilenet,swimtra
mob平台发送验证码第一步:注册mob平台账号第二步:在mob平台配置SMSSDK环境。1.点击下图红色圆圈处的产品中心。2.点击立即进入。3.点击创建应用。4.同意隐私服务。5.创建应用。6.点击下图红色圆圈接入接口。7.选择SMSSDK。8.获取你的·`App Key`和`App Secret`。9.点击SDK下载。10.下载SMSSDK。第三步:把SMSSDK的代码添加到android1.
深度学习与图神经网络学习分享:CNN 经典网络之-ResNetresnet 又叫深度残差网络图像识别准确率很高,主要作者是国人哦深度网络的退化问题深度网络难以训练,梯度消失,梯度爆炸,老生常谈,不多说resnet 解决了这个问题,并且将网络深度扩展到了最多152层。怎么解决的呢?残差学习结构如图在普通的卷积过程中加入了一个x的恒等映射(identity mapping)专家把这称作 skip co
转载
2024-04-08 21:48:49
133阅读
ResNet神经网络随着深度加深,会产生很多问题,比如梯度消失和梯度爆炸,可能还会使网络恶化性能变差,所以有时深层次的网络效果反而没有浅层网络好。深层次的网络按理说应该可以学会浅层+恒等映射的形式,这样也能达到浅层的效果,但是由于网络degradation的问题,这并不成立,也就是说,深层次网络解的集合没有包含浅层解。为了解决这一问题,Residual就被提出了。Residual 模块 从上图中可
转载
2024-04-22 19:14:17
91阅读
目录前言一、背景介绍二、模型复合缩放(Compound scaling) 前言EfficientNet真的超级强大,让我们一起来耐心学习它吧! 论文链接:https://arxiv.org/pdf/1905.11946.pdf一、背景介绍EfficientNet是Google在2019年5月提出的网络,在当时表现SOTA,超级强,该论文提出了一种多维度混合的模型放缩方法。compound sca
转载
2024-08-21 10:38:53
661阅读
论文名称:RepVGG: Making VGG-style ConvNets Great Again 论文下载地址:https://arxiv.org/abs/2101.03697 官方源码(Pytorch实现):https://github.com/DingXiaoH/RepVGG 文章目录0 前言1 RepVGG Block详解2 结构重参数化2.1 融合Conv2d和BN2.2 Conv2d
这个论文看下来,有这么几个重点需要去掌握:将整张图片转化为多个patches,作为 transformer的序列输入输入的时候需要加入位置编码,三种位置编码:一维,二维,相对位置编码,这三种效果没有太大区别;transformer可以接受CNN的输出作为输入,作为一种transformer的混合结构,区别于VIT这种无卷积结构可能是由于缺乏inductive biases,数据集上直接训练的VIT
转载
2024-02-12 21:33:18
367阅读
背景在图像分类任务上,现存网络有VGG、Resnet等,其中Resnet的出现使得计算机识别准确率超过人类自身。但是在目标检测和图像分割任务上准确率一直较低。现如今,在图像语义分割(对像素点进行分类)任务上,常见网络例如:FCN、SegNet、U-Net、SegNet、DeepLab、FC-Densenet E-Net 和 Link-Net、RefineNet、PSPNet、Mask-RCNN 以
转载
2024-04-07 10:48:39
207阅读
# 使用 jQuery Mobile 实现左右滑动屏幕切换
在现代网络开发中,我们经常需要为用户提供流畅的移动体验。jQuery Mobile 是一个专门设计用于开发移动应用的框架,它使得实现左右滑动屏幕切换变得简单而高效。这篇文章将介绍如何使用 jQuery Mobile 实现左右滑动切换效果,并提供一些示例代码。
## jQuery Mobile 简介
jQuery Mobile 是一个
前言 这段时间到了新公司,工作上开始研究DeepLearning以及TensorFlow,挺忙了,前段时间看了VGG和deep residual的paper,一直没有时间写,今天准备好好把这两篇相关的paper重读下。 VGGnet VGG解读 VGGnet是Oxford的Visual Geometry Group的team,在ILSVRC 2014上的相关工作,主要工作是证明了增加网络的深度能
1.效果演示2.数据集的采集健康叶片中度虫害重度虫害3.分类网络的构建(1)vgg模型AlexNet问世之后,很多学者通过改进AlexNet的网络结构来提高自己的准确率,主要有两个方向:小卷积核和多尺度。而VGG的作者们则选择了另外一个方向,即加深网络深度。 故而vgg模型是加深了网络深度的AlexNet模型那么什么是AlexNet模型 网络总共的层数为8层,5层卷积,3层全连接层。(2)resn
转载
2024-05-31 23:47:09
62阅读
深度学习——分类之ResNeXt论文:Aggregated Residual Transformations for Deep Neural Networks
作者:Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming HeImageNet Top5错误率:3.03%中心思想:Inception那边把ResNet拿来搞了Ince
转载
2024-05-19 09:55:08
46阅读
摘要: 当前深度学习十分火热,深度学习网络模型对于降低错误率的重要作用不言而喻。深度学习应用场景主要分为三类:物体识别与分类,物体检测,自然语言处理。在物体识别与分类领域,随着AlexNet在2012年一炮走红,深度学习重新燃起了一片热情。从Lenet5第一次使用卷积开始,经历了AlexNet VGG Inception ResNet等各种模型,错误率也一再降低。ResNet-152
转载
2024-06-11 14:49:13
131阅读
resnet 解决了随着CNN网络深度的加深,网络性能退化的一个问题。具体解释见 (11:20): 飞桨开发者live:手把手教你玩转工业质检_哔哩哔哩_bilibili 一分钟带你认识残差模块对百度vd模型解读(14:40):飞桨开发者live:手把手教你玩转工业质检_哔哩哔哩_bilibili论文翻译中文版 Resnet v2 结构有人用
转载
2024-05-13 09:27:05
44阅读
五、VGG、AlexNet、ResNet网络(超详细哦)1、 VGG 网络1.1、 VGG网络结构1.2、理解VGG16(19)卷积网络2、AlexNet网络2.1、AlexNet网络结构2.2、理解AlexNet网络2.3、Alexnet网络中各层的作用3、ResNet网络!!!写博客不容易,请君给个赞在离开!!! 1、 VGG 网络1.1、 VGG网络结构下面是VGG网络的结构(VGG16和
转载
2024-03-11 14:45:52
189阅读
AlexNetAlexNet是在IMAGENET比赛中第一个获奖的CNN结构。VGGNetVGGNet和AlexNet实际上都是对最传统的CNN进行重复堆叠的实践,将效果较好的结构记录下来方便以后继续使用,常用的有vgga(11层),vgg16和vgg19。结构如下: (示意图来自于cs231n的课件,有一点小问题,vgg16应该是3个conv层后接pool)ResNet论文原文 https:
转载
2024-03-17 15:10:39
47阅读
截至这篇文章发表,谷歌提出的关于Inception块组成的GoogleNet经历了如下五个版本:具体过程详见上述参考文档②。 Note:其中v1v2的过程中滤波器组扩展指的是Inception块内部结构中网络变得更宽而不是更深,从而解决表征性瓶颈问题。分解卷积指的是比如说卷积分解成和卷积2个过程,作者指出这样会节约资源消耗。 Inception-v4, Inception-ResNet and t
转载
2024-04-22 10:10:07
91阅读
小总结一下Inception v1——Inception v4的发展历程1.Inception V1通过设计一个系数网络结构,但是能够产生稠密的数据,既能增加神经网络的表现,又能保证计算资源的使用效率。通过Split-Merge包含了1 * 1,3 * 3,5 * 5的卷积,3*3的池化,可以增加网络对多尺度的适应性,当然,增加了网络的宽度。这里v1网络给人眼前一亮的是有一个Bottleneck
转载
2024-03-24 10:42:22
75阅读
这是微软方面的最新研究成果, 在第六届ImageNet年度图像识别测试中,微软研究院的计算机图像识别系统在几个类别的测试中获得第一名。本文是解决超深度CNN网络训练问题,152层及尝试了1000层。随着CNN网络的发展,尤其的VGG网络的提出,大家发现网络的层数是一个关键因素,貌似越深的网络效果越好。但是随着网络层数的增加,问题也随之而来。首先一个问题是 vanishing/exploding g
转载
2024-04-29 19:21:08
51阅读
1、Introduction提出问题:随着网络越来越深,梯度就会出现爆炸或者消失 解决方法: 1、在权重随机初始化的时候,不要特别大也不要特别小 2、在中间加入一些normalization,包括BN(batch normalization)可以使得校验每个层之间的输出和梯度的均值和方差相对来说比较深的网络是可以训练的,避免有一些层特别大,有一些层特别小,使用这些技术之后能够收敛,但是当网络变深的
转载
2024-05-13 09:47:47
931阅读