Deep Residual Learning for Image Recognition原论文名字 ResNet34层模型的结构简图: 图中有连接线的结构是残差结构,最后通过一个平均下采样操作和一个全连接层得到最终的输出。网络中的亮点:1.超深的网络结构(突破1000层) 从下图可以看出单纯的堆叠卷积层和最大池化下采样层去堆叠网络并不是层度越深效果越好 原作者提出了两个问题: 1.1随着网络的层
转载 2024-04-02 06:23:35
2149阅读
这是Du Tran在Learning Spatiotemporal Features with 3D Convolutional Networks之后发表的续篇,相当于C3D的第二个版本,C3D-resnet.我个人觉得这篇文章除了主要探讨C3D-resnet以外,更重要的是对CNN卷积结构在时空特征表现上的一个深入探讨。大部分工作还是基于UCF-101,而且从头训练,很利于在硬件条件有限的情况下
RNN 有一个致命的缺陷,传统的 MLP 也有这个缺陷,看这个缺陷之前,先祭出 RNN 的 反向传导公式与 MLP 的反向传导公式:\[RNN : \ \delta_h^t = f'(a_h^t) \left (\sum_k\delta_k^tw_{hk} + \sum_{h'} \delta^{t+1}_{h'}w_{hh'}   \right )\]\[MLP : \ \d
转载 2024-07-16 12:58:12
106阅读
【深度学习网络结构】 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet) 一、CNN卷积神经网络的经典网络综述【相关论文】 感谢博主的总结,链接为     下面列出的论文都是我学习CNN过程中精读过的论文,也是我认为学习CNN必读的论文,论文的顺序基
网络体系结构和网络协议是计算机网络技术中两个最基本的概念。今天我们将从网络层次,服务和协议的基本概念出发,理解一下网络中基本的概念。一. 网络体系结构的基本概念1. 什么是网络协议在生活中,我们多于通信协议并不陌生,一种语言本身就是一种协议。在我们寄信或者请假时,假条内容的格式就是一种协议。这样的例子很多。在计算机中,计算机网络由多台主机组成,主机之间需要不断的交换数据。要做到有条不紊的交换数据,
主要贡献:网络变深以后的梯度消失,梯度爆炸问题,这个问题被BN解决。网络退化问题,并不是过拟合,而是在增加更多的层后导致的训练误差。如relu函数,低维度的特征通过relu后,会有一部分被毁掉,因为维度越低分布到relu激活带的可能性就越小。那么在反向传播的时候就会出现梯度消失,那么神经元的权重就无法更新,导致特征退化。那么理想解决办法就是对冗余数据使用relu,对不含冗余信息的使用线性激活。对现
转载 2024-03-18 23:41:34
1021阅读
在使用深度神经网络时我们一般推荐使用大牛的组推出的和成功的网络。如最近的google团队推出的BN-inception网络和inception-v3以及微软最新的深度残差网络ResNET。 我们从简单的网络开始介绍,学习理解网络结构是如何发展到今天的,同时本文整理了自己用别人网络结构时别人的网络结构的pre-reain model和prototxt文件的资源。 首先安利caffe zoo大法,
本篇文章的重点就是介绍GoogLeNet的网络架构,它也经历了多个版本的改进。GoogLeNet,即Inception模块化后进行模块的串接。论文:https://arxiv.org/abs/1409.4842一、网络结构 二、Inception结构图原始Inception 结构采用3种卷积核的卷积层进行并行提取特征,这可以加大网络模型的宽度,不同大小的卷积核也就意味着原始Incepti
数据结构二 文章目录数据结构二trie树例题1:trie字符串统计例题2:最大异或对并查集例题1:合并集合例题2:连通块中点的数量例题3. 食物链**堆例题1:堆排序例题2 模拟堆 trie树类似于数据结构中的树,但不是二叉树,一个节点可以有多于两个的子节点 其完成功能主要是存储和查找,(可以通过维护特殊的变量解决特定的题目,以下例题中有讲)存储: 从根节点开始idx==0;根节点不存储数据,利用
 自用方便日后回顾,有问题可以去原博客中向作者提问,侵权即删。总结对比下L1 损失函数,L2 损失函数以及SmoothL1损失函数的优缺点。均方误差MSE (L2Loss)均方误差(Mean Square Error,MSE)是模型预测值f(x) 与真实样本值y 之间差值平方的平均值,其公式如下 其中,yi和f(xi)分别表示第i个样本的真实值及其对应的预测值,n为样
【图像分类】【深度学习】【Pytorch版本】 ResNet模型算法详解 文章目录【图像分类】【深度学习】【Pytorch版本】 ResNet模型算法详解前言ResNet讲解Deep residual learning framework(深度残差学习框架)残差结构(Residuals)ResNet模型结构ResNet Pytorch代码完整代码总结 前言ResNet是微软研究院的He, Kaim
论文题目:Focal Loss for Dense Object Detection论文链接:论文链接 文章目录RetinaNet的引入1.RetinaNet的创新点backbone(与FPN的3个不同)2.预测器3.正负样本匹配4.损失的计算 RetinaNet的引入RetinaNet 原始论文为发表于 2017 ICCV 的 Focal Loss for Dense Object Detect
论文重新审视了ResNet结构、训练方法以及缩放策略,提出了性能全面超越EfficientNet的ResNet-RS系列。从实验效果来看性能提升挺高的,值得参考   论文: Revisiting ResNets: Improved Training and Scaling Strategies论文地址:https://arxiv.org/abs/2103.07579论文代码:https://gi
1、输入子系统宏观介绍1.1、层次结构(1)输入子系统分为三层,分别是事件处理层、核心层、设备驱动层; (2)鼠标移动、键盘按键按下等输入事件都需要通过设备驱动层→核心层→事件处理层→用户空间,层层上报,直到应用程序; (3)事件处理层和核心层是内核维护人员提供的,我们作为嵌入式开发工程师是不需要修改,只需要理解和学会使用相关接;我们只需要根据核心层提供的接口和硬件特性,去编写设备驱动层;1.2、
Resnet是ImageNet竞赛中分类问题比较好的网络,它有多种结构形式,有Resnet-34Resnet-50, Resnet-101, Resnet-152. 先说一下残差表示:VLAD是一种通过关于字典的残差向量进行编码的表示形式。残差学习:H(x) 作为几个堆叠层(不必是整个网络)要拟合的基础映射,x表示这些层中第一层的输入。假设多个非线性层可以渐近地近似复杂函数,它等价于假设它们可
目录ResNet网络结构详解resnet的创新 残差块Residul Block 整体网络结构ResNet代码实现ResNeXt详解组卷积更新了BlockResNeXt整体结构ResNet网络结构详解resnet的创新1.可以堆叠上千层简单堆叠卷积层会造成梯度消失梯度爆炸,以及退化问题。退化问题说的是在训练集和验证集的精度都变差,不是在表达过拟合,而是堆叠过深后模型效果会变差。
转载 2024-04-03 07:13:57
333阅读
降维概念降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组 “不相关” 主变量的过程维数维数:嵌套的层数0维 标量1维 向量2维 矩阵3维…n维特征选择定义数据中包含 冗余 或者 相关变量(或称为 特征、属性、指标等),旨在从原有特征中找出主要特征方法Filter(过滤式) Embeded(嵌入式)Filter(过滤式)主要探究特征本身特点、特征与特征和目标值之间关联方差选择法:低方差特
转载 2024-09-24 21:33:05
90阅读
出处论文:Deep Residual Learning for Image Recognition作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian SunImageNet Top5错误率: 3.57%主要思想主要体现在 Residual(残差),从名字就可以看出,不学绝对值,而学差值。不去学绝对的完全重构映射,只学映射后相对于原来的偏差,即和iden
文章目录前言一、总概二、代码解读1.self.forward方法2.ResNet类与其__init__()3.self._make_stem_layer方法4.self.make_res_layer方法4.1 ResLayer类4.2 `__init__` 中 self.res_layers总结 前言mmdetection/mmdet/models/backbones/resnet.py中的Re
转载 2024-02-23 12:30:05
269阅读
# 引言 深度残差网络的提出是深度学习领域的里程碑事件,它使得网络可以做大做深,现在主流的网络中都有残差结构 # 问题 - ##深度网络的退化 深度网络有一个普遍的问题:随着网络层数的增加,准确率是先增后减的,准确率增加是很好理解的,毕竟网络变深之后,模型的学习能力也随之变强,结果也相应地变好,但是结果变差是反直觉的,这种现象被称为网络退化,有人给出解释:模型的参数规模超过数据规模,模型可能发生了
  • 1
  • 2
  • 3
  • 4
  • 5