RNN 有一个致命的缺陷,传统的 MLP 也有这个缺陷,看这个缺陷之前,先祭出 RNN 的 反向传导公式与 MLP 的反向传导公式:\[RNN : \ \delta_h^t = f'(a_h^t) \left (\sum_k\delta_k^tw_{hk} + \sum_{h'} \delta^{t+1}_{h'}w_{hh'}   \right )\]\[MLP : \ \d
转载 2024-07-16 12:58:12
106阅读
Resnet(Deep residual network, ResNet),深度神经网络,卷积神经网络历史在具有划时代意义的神经网络。与Alexnet和VGG不同的是,网络结构上就有很大的改变,在大家为了提升卷积神经网络的性能在不断提升网络深度的时候,大家发现随着网络深度的提升,网络的效果变得越来越,甚至出现了网络的退化问题,80层的网络比30层的效果还差,深度网络存在的梯度消失和爆炸问题越
首先回顾ResNetv1, 这里把第一版本的ResNet叫做原始版本,原始版本中的网络结构由大量单元(“Residual Units”)组成,原文中的单元有两种(见图1),一种是building block,一种是“bottleneck” building block,本文中以building block为例。图1.原版本ResNet中提到的两种单元。左边是building block
前言 学习cs231n时接触到这篇文章,这篇文章提出了ResNetResNet可以说是深度学习史上的一个里程碑,具有很高的价值,因此打算好好理解以下ResNet的思想和方法。问答总结网络提出的动机是什么?根据动机作者是如何提出网络的?网络shortcut部分是恒等映射是最优的,基于此,作者将relu移到了处。从直观理解、梯度消失、模型集成、破坏对称性说明网络为何起作用。ResNe
本文是接着上一篇目录网络1 堆叠多层卷积 2 网络结构:用来解决深层网络训练难度过大的问题 ◼  网络的实现  ◼  模型实验结果 ◼  模型与同等深度卷积的对比网络1 堆叠多层卷积理论上 ,深层的网络效果不会比浅层网络, 因为
转载 2024-04-18 13:43:59
323阅读
Deep Residual Learning for Image Recognition原论文名字 ResNet34层模型的结构简图: 图中有连接线的结构是结构,最后通过一个平均下采样操作和一个全连接层得到最终的输出。网络中的亮点:1.超深的网络结构(突破1000层) 从下图可以看出单纯的堆叠卷积层和最大池化下采样层去堆叠网络并不是层度越深效果越好 原作者提出了两个问题: 1.1随着网络的层
转载 2024-04-02 06:23:35
2144阅读
BERT 模型参数很多,进一步提升模型规模会受到 GPU/TPU 内存大小的限制。Google 提出了 ALBERT[1][2](A Lite BERT)来解决这个问题。ALBERT 使用了两项降低参数量的技术,并改进了 NSP 预训练任务:一、嵌入矩阵分解不管是 BERT,还是后续在 BERT 基础上改进的模型 XLNet,RoBERTa,他们的嵌入向量维度和隐藏层维度都是相等的,这样能进行
主要贡献:网络变深以后的梯度消失,梯度爆炸问题,这个问题被BN解决。网络退化问题,并不是过拟合,而是在增加更多的层后导致的训练误差。如relu函数,低维度的特征通过relu后,会有一部分被毁掉,因为维度越低分布到relu激活带的可能性就越小。那么在反向传播的时候就会出现梯度消失,那么神经元的权重就无法更新,导致特征退化。那么理想解决办法就是对冗余数据使用relu,对不含冗余信息的使用线性激活。对现
转载 2024-03-18 23:41:34
1021阅读
1. ResNet沿用了VGG完整的 3×3 卷积层设计。 里首先有2个有相同输出通道数的 3×3 卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的 1×1 卷积层来将输入变换成需要
ResNet网络Pytorch实现——Bottleneck上一篇:【课程1 - 第二周作
原创 2023-01-17 08:29:18
140阅读
ResNet网络Pytorch实现——BasicBlock上一篇:【课程1 - 第二周作业】
原创 2023-01-17 08:29:38
280阅读
引言深度网络(Deep residual network, ResNet)的提出是CNN图像史上的一件里程碑事件,让我们先看一下ResNet在ILSVRC和COCO 2015上的战绩: ResNet取得了5项第一,并又一次刷新了CNN模型在ImageNet上的历史: ResNet的作者何凯明也因此摘得CVPR2016最佳论文奖,当然何博士的成就远不止于此,感兴趣的可以去搜一下他
网络退化问题AlexNet、VGG、GoogleNet结构都是通过加深网络结果,但是网络的深度提升不能通过层与层的简单堆叠来实现。由于梯度消失问题,深层网络很难训练。因为梯度反向传播到前面的层,重复相乘可能使梯度无穷小。结果就是,随着网络的层数更深,其性能趋于饱和,甚至开始迅速下降,ResNets 网络2015年何恺明推出的ResNet在ISLVRC和COCO上横扫所有选手,获得冠军。ResN
数据结构二 文章目录数据结构二trie树例题1:trie字符串统计例题2:最大异或对并查集例题1:合并集合例题2:连通中点的数量例题3. 食物链**堆例题1:堆排序例题2 模拟堆 trie树类似于数据结构中的树,但不是二叉树,一个节点可以有多于两个的子节点 其完成功能主要是存储和查找,(可以通过维护特殊的变量解决特定的题目,以下例题中有讲)存储: 从根节点开始idx==0;根节点不存储数据,利用
 自用方便日后回顾,有问题可以去原博客中向作者提问,侵权即删。总结对比下L1 损失函数,L2 损失函数以及SmoothL1损失函数的优缺点。均方误差MSE (L2Loss)均方误差(Mean Square Error,MSE)是模型预测值f(x) 与真实样本值y 之间差值平方的平均值,其公式如下 其中,yi和f(xi)分别表示第i个样本的真实值及其对应的预测值,n为样
【图像分类】【深度学习】【Pytorch版本】 ResNet模型算法详解 文章目录【图像分类】【深度学习】【Pytorch版本】 ResNet模型算法详解前言ResNet讲解Deep residual learning framework(深度学习框架)结构(Residuals)ResNet模型结构ResNet Pytorch代码完整代码总结 前言ResNet是微软研究院的He, Kaim
这是Du Tran在Learning Spatiotemporal Features with 3D Convolutional Networks之后发表的续篇,相当于C3D的第二个版本,C3D-resnet.我个人觉得这篇文章除了主要探讨C3D-resnet以外,更重要的是对CNN卷积结构在时空特征表现上的一个深入探讨。大部分工作还是基于UCF-101,而且从头训练,很利于在硬件条件有限的情况下
ResNet网络Pytorch实现上一篇:【课程1 - 第二周作业】 ✌✌✌✌ 【目录,include_top=True):
原创 2023-01-17 08:40:13
309阅读
Darknet53原理        Darknet53是一个卷积神经网络模型,在2018年由Joseph Redmon在论文"YOLOv3: An Incremental Improvement"中提出,用于目标检测和分类任务。它是YOLOv3的核心网络模型,其设计思路是通过堆叠多个卷积和连接层来提高特征提取的效
使用LSTM模型重新进行数字求和实验,验证LSTM模型的长程依赖能力。 6.3.1 模型构建6.3.1.1 LSTM层LSTM层的代码与SRN层结构相似,只是在SRN层的基础上增加了内部状态、输入门、遗忘门和输出门的定义和计算。这里LSTM层的输出也依然为序列的最后一个位置的隐状态向量。代码实现如下:import torch.nn.functional as F import torch
转载 10月前
56阅读
  • 1
  • 2
  • 3
  • 4
  • 5