摘要:本文主要讲解CNN实现中文文本分类的过程,并与贝叶斯、决策树、逻辑回归、随机森林、KNN、SVM等分类算法进行对比。本文分享自华为云社区《[Python人工智能] 二十一.Word2Vec+CNN中文文本分类详解及与机器学习算法对比》,作者:eastmount。一.文本分类文本分类旨在对文本集按照一定的分类体系或标准进行自动分类标记,属于一种基于分类体系的自动分类文本分类最早可以追溯到上世
  概览  自动文本分类(Automatic Text Categorization),或者简称为文本分类,是指计算机将一篇文章归于预先给定的某一类或某几类的过程。  文本分类是指按照预先定义的主题类别,为文档集合中的每个文档确定一个类别.文本分类文本挖掘的一个重要内容。  所谓文本分类,是指对所给出的文本,给出预定义的一个或多个类别标号,对文本进行准确、高效的分类.它是许多数据管理任务的重要组
1 大纲概述  文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:  word2vec预训练词向量  textCNN 模型  charCNN 模型  Bi-LSTM 模型  Bi-LSTM + Attention 模型  RCNN 模型  Adversarial LSTM 模型  Transform
本文讲述如何使用scikit-learn的KNN工具对文本进行分类。 关于KNN K-近邻算法,简称KNN(k-Nearest Neighbor),是一个相当简单的分类/预测算法。其主要思想就是,选取与待分类/预测数据的最相似的K个训练数据,通过对这K个数据的结果或者分类标号取平均、取众数等方法得到待分类/预测数据的结果或者分类标号。 关于KNN,笔者在浅入浅出:K近邻算法有较为详细的介绍。
转载 2024-08-12 10:59:30
64阅读
文件分类应该是大家每天都在做的事情。假设现在有一大批文件(这一大批文件类型不定,也就是说有些是文本文件有些是二进制文件)都被放在了一个文件夹中,需要对它们进行一个分类,该如何迅速地完成?手工操作文件数量少还可以接受,文件数量一旦多了起来就显得力不从心~!因此,编写一个程序来处理这个问题是很有必要的。下面我用最简单的例子为大家讲解如何快速完成文件分类的操作。复制还是移动文件分类就是把一个文件夹中的文
导语:数据挖掘,又译为数据采矿,是指从大量的数据中通过算法搜索隐藏于其中信息的过程。本篇内容主要向大家讲述如何使用KNN算法进行数据分类和数据预测。1、数据分类基础概念数据分类就是相同内容、相同性质的信息以及要求统一管理的信息集合在一起,把不同的和需要分别管理的信息区分开来,然后确定各个集合之间的关系,形成一个有条理的分类系统。举个最简单的例子:我们定义K线为三类:“上涨”:涨幅超过1%,“下跌”
# 使用KNN进行文本分类Python实现 ## 引言 在现代数据分析中,文本分类是一项重要任务。它被广泛应用于电子邮件过滤、社交媒体分析、情感分析等领域。K-最近邻(K-Nearest Neighbors,KNN)是一种简单但有效的分类算法,适合文本数据的分类。本文将介绍如何使用Python中的Scikit-learn库实现KNN文本分类,并以生成的饼状图和关系图进行辅助说明。 ## K
原创 10月前
117阅读
七月,酷暑难耐,认识的几位同学参加知乎看山杯,均取得不错的排名。当时天池AI医疗大赛初赛结束,官方正在为复赛进行平台调试,复赛时间一拖再拖。看着几位同学在比赛中排名都还很不错,于是决定抽空试一试。结果一发不可收拾,又找了两个同学一起组队(队伍init)以至于整个暑假都投入到这个比赛之中,并最终以一定的优势夺得第一名。比赛介绍这是一个文本分类的问题:目标是“参赛者根据知乎给出的问题及话题标签的绑定
knn法是一种基本分类与回归方法应用:knn算法不仅可以用于分类,还可以用于回归..1、文本分类文本分类主要应用于信息检索,机器翻译,自动文摘,信息过滤,邮件分类等任务.2、可以使用knn算法做到比较通用的现有用户产品推荐,基于用户的最近邻(长得最像的用户)买了什么产品来推荐是种介于电子商务网站和sns网站之间的精确营销.只需要定期(例如每月)维护更新最近邻表就可以,基于最近邻表做搜索推荐可以很
如果想要使用 Python 进行文本分类,需要使用相应的机器学习算法和库。具体来说,可以使用 scikit-learn 这个库中的朴素贝叶斯分类器、支持向量机分类器、决策树分类器等来对文本进行分类。首先,需要准备好训练数据和测试数据。训练数据是指用来帮助模型学习的数据,测试数据是用来评估模型效果的数据。在进行文本分类时,训练数据通常包含若干个文本和对应的分类标签,测试数据也是如此。然后,需要对文本
转载 2023-06-30 21:30:05
175阅读
一、概述上一篇文章中简单介绍了文本聚类,体验了无标注语料库的便利性。然而无监督学习总归无法按照我们的意志预测出文档的类别,限制了文本聚类的应用场景。很多情况下,我们需要将文档分门别类到具体的类别中。因此需要用到文本分类。本文便主要讲解文本分类的原理及实践。二、文本分类的概念文本分类,指的是将一个文档归类到一个或者多个类别的自然语言处理任务。值得一提的是,文档级别的情感分析也可以视作文本分类任务。此
理论什么是朴素贝叶斯算法?朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关。举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果可以被判定为是苹果。尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的。朴素贝叶斯分类器很容易建立,特别适合用于大型数据集,众所周知,
##本文加载语料库,并对语料库进行文本分类。使用语言:python,环境:jupyterhub。本文使用的是NLTK库。##首先,关于语料库数据集,是zip压缩文件的形式存在的。本文作为案例的数据集来自于联合国大会的演讲,这些演讲分为澳大利亚和新西兰的。因此,在zip的语料库文件夹里,分为“AU”和“NZ”两个子语料库。子语料库中内容是以txt为格式存下的,每一篇文章是一个txt,本案例“AU”和
** 利用Python进行文本分类, 可用于过滤垃圾文本抽样人工标注样本文本中垃圾信息样本建模模型评估新文本预测 参考:http://scikit-learn.org/stable/user_guide.html PYTHON自然语言处理中文翻译 NLTK Natural Language Processing with Python 中文版 主要步骤:分词特征词提取生成词-文档矩阵整合分类变量建
这篇博客主要是介绍一下我最近开源的python库——DeepClassifier,用于文本分类,目前已经集成了较多的文本分类模型,欢迎大家安装、star以及fork~ 动机首先谈谈我为什么要开发这个库。有两个原因吧~第一,我自身是做NLP这块的,相信做NLP的小伙伴们都知道,文本分类是NLP中最基础并且是最广泛的任务。同时这也是我们入门NLP的尝试的第一个任务。虽然目前已有的文本分类模型都相对简单
事情是这样的,有一个图片数据集需要根据分成很多类以便于给其设置标签,但所有的图片都在一个文件里,另外又给了个.txt文件,其中每行都是对应图片的类别。例如第1行对应的第0001.jpg是第14类(每个类都有多张图片),显而易见,.txt文件的行数和图片的总数是相等的。以下为待分类的文件:现在需要根据标签将同类的文件放入同一个文件夹中,如图为分类完成的结果,总览和第一类文件夹: 其中过滤了图片宽和高
转载 2023-09-28 13:37:07
14阅读
在现代自然语言处理 (NLP) 领域,文本分类是一个重要的任务,旨在将文本数据分配到一个或多个类别中。文本分类的应用非常广泛,从垃圾邮件检测到情感分析,再到主题分类等,都是当前热门的研究和应用领域。通过采用各种机器学习和深度学习算法,研究人员和开发者可以有效地对文本进行分类和筛选。 ### 问题背景 在处理文本分类问题时,我们常常会遇到以下现象:使用机器学习模型进行文本分类时,模型的准确率远低
本文实例为大家分享了使用RNN进行文本分类python代码实现,供大家参考,具体内容如下1、本博客项目由来是oxford 的nlp 深度学习课程第三周作业,作业要求使用LSTM进行文本分类。和上一篇CNN文本分类类似,本此代码风格也是仿照sklearn风格,三步走形式(模型实体化,模型训练和模型预测)但因为训练时间较久不知道什么时候训练比较理想,因此在次基础上加入了继续训练的功能。2、构造文本分
对新闻文本(10类)进行文本分类,通过准确率、召回率、 f1-score 等指标对分类结果进行分析。python版本:python 3.6 分类方法:朴素贝叶斯需导入的相关库import os import time import numpy as np import pandas as pd import jieba from jieba import analyse from sklearn.
目录RNN基础循环神经网络(Recurrent Neural Networks)RNN的训练方法——BPTT算法(back-propagation through time)长期依赖(Long-Term Dependencies)问题LSTM(long short-term memory)LSTM 的核心思想逐步理解 LSTMLSTM 的变体GRU(Gated Recurrent Unit)双向R
  • 1
  • 2
  • 3
  • 4
  • 5