# Python实现数据分析指南
## 1. 介绍
作为一名经验丰富的开发者,我将教你如何使用Python实现数据分析。在本文中,我将向你展示整个流程,并提供每一步需要使用的代码和注释。
## 2. 流程图
```mermaid
flowchart TD
A(开始) --> B(导入数据)
B --> C(数据清洗)
C --> D(数据分析)
D --> E
原创
2024-03-02 05:58:25
29阅读
大数据工程师可以选择多种语言学习,其中,Java和Python是做大数据平台开发最常见的两种编程语言,也是当下较为火热的两种语言,Java与Python在做大数据开发时各有优缺点,究竟选择哪种语言好呢?Java和Python哪个编程语言好?1、Java大数据Java语言应用广泛,可以应用的领域也非常多,有完整的生态体系,另外Java语言的性能也非常不错。Java与大数据的关系非常密切,一方面目前做
转载
2023-08-02 14:42:38
63阅读
在互联网的下半场,不断精细化运营的背景下,产品经理不再是单纯的靠感觉来做产品,更需要培养数据的意识,能以数据为依归,来不断改善产品。不同于公司专业的数据分析师,产品经理更多的可以从用户、业务的层面去看待数据,去更快更透彻的去寻找数据变动的原因。那么在数据已经被有效记录的前提下,如何有效的去分析数据呢?一、明确数据分析的目的1、如果数据分析的目的是要对比页面改版前后的优劣,则衡量的指标应该从页面的点
转载
2023-11-15 10:51:01
66阅读
Matplotlib的概念和简单应用
一、Matplotlib的概念
Matplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。 它也可以和图形工具包一起使用,如 PyQt 和 wxPython。Matplotlib的特点:1.是专门用于开发2D图标(包括3D图表)2.使用起来极其简单3.以渐进、交互方式实现数据可视化mat
原创
2022-03-28 15:22:44
190阅读
Matplotlib的概念和简单应用
一、Matplotlib的概念
Matplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。 它也可以和图形工具包一起使用,如 PyQt 和 wxPython。Matplotlib的特点:1.是专门用于开发2D图标(包括3D图表)2.使用起来极其简单3.以渐进、交互方式实现数据可视化mat
原创
2022-03-28 15:18:22
547阅读
系列一:《python数据分析基础与实践》 章节1Python概况 课时2Python简介 章节2Python安装 课时3安装Anaconda 课时4使用Anaconda 章节3数据准备 课时5数据类型 – 布尔型 课时6数据类型 – 数值型 课时7数据类型 – 字符型 课时8数据结构 – List 课时9数据结构 – Tuple 课时10数据结构 – Set 课时11 数据结构 – Dic 课时
转载
2024-08-26 19:36:50
11阅读
原标题:Python说:常见的数据分析库有哪些又是老生常谈的话题了,前面出过有不知道有好多篇讲数据分析库的文章,但是今天还是得拿出来再聊聊,有免得有些新伙伴再去找了!常见的Python数据分析库PandasPandas是一个开放源码的Python库,它使用强大的数据结构提供高性能的数据操作和分析工具。它的名字:Pandas是从Panel Data - 多维数据的计量经济学(an Econometr
转载
2023-07-30 12:48:19
254阅读
直到第三季度尾,领导让她马上出一份市场团队前几个月的销售统计表和竞品信息,第二天开会用,这些数据和信息分布在大小几十个表格和文档里,大小有5G,光是打开都花了15分钟。 面对这么庞大的数据,python还不太熟练的她束手无策,excel就更不用说了,这么大的数据卡死简直是分分钟的事,万般无奈之下,她向专业做数据分析的我请教该怎么办。其实,做数据分析不一定得用python、R这些编程语言,
转载
2024-08-23 14:21:58
141阅读
数据分析的入门思维,首先要认识数据,然后对数据进行简单的分析,比如描述性统计分析和相关性分析等。一,认识变量和数据变量和数据是数据分析中常用的概念,用变量来描述事物的特征,而数据是变量的具体值,把变量的值也叫做观测值。1,变量变量是用来描述总体中成员的某一个特性,例如,性别、年龄、身高、收入等。变量可以分为:定性变量:用于分类,一般是文本,例如,性别、颜色定序变量:用于表示等级或次序的变量,例如,
转载
2023-07-20 21:40:52
171阅读
Python数据分析:情感分析 自然语言处理(NLP) 将自然语言(文本)转化为计算机程序更容易理解的形式 预处理得到的字符串进行向量化 经典应用: 情感分析 文本相似度 文本分类 简单情感分析: 情感字典(sentiment dictionary) 人工构造一个字典 根据关键词匹配 优点:简单实用 ...
转载
2021-07-12 12:11:00
1870阅读
2评论
D-Tale数据可视化插件是后端框架Flask与前端框架React组合产生的一款开源的数据可视化分析插件。目前支持DataFrame、Series、MultiIndex、DatetimeIndex 和RangeIndex 等 Pandas的数据结构对象,并且还提供了常规数据结构的函数分析等可视化功能实现。安装可视化分析插件pip install dtale首先准备好需要分析的数据源,这里以exce
转载
2023-09-25 14:30:56
168阅读
Python 现如今已成为数据分析和数据科学使用上的标准语言和标准平台之一。那么作为一个新手小白,该如何快速入门 Python 数据分析呢?下面根据数据分析的一般工作流程,梳理了相关知识技能以及学习指南。数据分析一般工作流程如下:数据采集数据存储与提取数据清洁及预处理数据建模与分析数据可视化1.数据采集数据来源分为内部数据和外部数据,内部数据主要是企业数据库里的数据,外部数据主要是下载一些公开数据
转载
2023-08-09 15:46:47
77阅读
Python是进行数据分析的一种很不错的语言,主要是因为以数据为中心的#python#库非常适合。 Pandas是其中的一种,使导入和分析数据更加容易。 在本文中,我使用了来分析斯坦福网站的公共数据集中的Country Data.csv文件中的数据。安装安装Pandas:pip install pandas在Pandas中创建DataFrame通过使用pd.Series方法将多个Series传递到
转载
2023-08-29 16:26:29
99阅读
1.数据获取我是在招聘网站上爬取了我们需要的数据信息,部分数据截图如下:不会爬虫的可以去我的python专栏里查看,那里有详细的过程。2.分析内容 1).数据分析岗位在不同行业的需求情况 2).数据分析岗位在不同
转载
2023-10-12 08:52:18
104阅读
目录1. 请导入相应模块并获取数据。导入待处理数据tips.xls,并显示前5行。2、分析数据 3.增加一列“人均消费”4查询抽烟男性中人均消费大于5的数据 5.分析小费金额和消费总额的关系,小费金额与消费总额是否存在正相关关系。画图观察。6分析男女顾客哪个更慷慨,就是分组看看男性还是女性的小费平均水平更高7.分析日期和小费的关系,请绘制直方图。8、绘图分析性别+抽烟的组合对慷
转载
2023-08-06 20:08:45
431阅读
1.展示数据首先,这里仅仅只有一个工作表,数据一共有订单号,订单行,销售时间(下单时间),交货时间(签收时间),货品交货状态(晚交货或按时交货),货品,用户的反馈情况(质量合格,返修或拒货),销售区域(华北,华南,马来西亚),数量以及销售金额等10列数据。粗略的看一下数据,我们就可以发现,在订单号和数量这两列存在部分行为空值,在销售金额这一列数据的单位不统一并且存在逗号,并且订单行这一列数据对我们
转载
2023-06-19 23:09:31
336阅读
准备分析汽车油耗- 从http://fueleconomy.gov/geg/epadata/vehicles.csv.zip(这里请使用咯~亲测!)下载汽车油耗数据集并解压 - 进入jupyter notebook(ipython notebook)并新建一个New Notebook - 输入命令import pandas as
转载
2024-01-30 19:39:28
5阅读
数据可视化
——通过Python实现数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。一、利用Matplotlib库实现数据可视化1、Matplotlib库的安装Windows+R,输入cmd启动CMD命令提示符控制器,输入指令python pip -m install us
转载
2023-09-22 11:07:13
93阅读
python作为当前主流的语言之一,他的功能是非常强大的。不论是在游戏行业还是数据分析行业还是软件开发啥的好像都可以用python,但作为一个数据分析师,并不需要用到他的全部功能。只是想要达到“能够用python完成数据分析工作”的效果,所以整理了这个随笔。一、数据导入数据的导入是进行数据分析的第一步骤,一般提取的数据由文本格式(txt)、表格格式(csv/excel)及数据库文件(dmp/直连)
转载
2023-05-26 23:24:41
184阅读
本篇将基于 Python ,梳理二手房数据分析的整体过程。 文章目录思路整理数据分析步骤的示例代码基于 Python 的二手房分析 | 另一种代码 思路整理数据收集:从网站或其他数据源收集二手房数据,并将其存储在 CSV 或其他数据格式中。数据清洗:读取数据并进行数据清洗,删除缺失或异常数据。数据分析:使用 Python 中的数据分析库,如 pandas 和 numpy,对数据进行分析。您可以生成
转载
2023-06-19 23:33:40
161阅读