【概述】矩阵快速利用矩阵的乘法与整数快速的结合,能够快速的算出 n 阶方阵 A 的 M 次 A^b,其结果仍是一个矩阵,无具体含义,在信息学竞赛中,矩阵快速常用于求解线性递推关系。【n*m 矩阵的快速】struct Matrix{ LL s[N][N]; }; Matrix e;//单位矩阵E Matrix x;//构造矩阵 void init(int n){
转载 2023-07-26 21:29:01
0阅读
一、问题描述    给定一个方阵 ,方阵  的  次  。二、简单算法    直接想法是利用for循环不断进行方阵乘法,直到求出 ,算法时间复杂度是 ,如此高的时间复杂度在实践中是走不通的。三、快速算法    下面是用python实现的&nbsp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757盗用一张图:把问题转化为矩阵的n-9次就行了
转载 2013-03-01 11:10:00
126阅读
2评论
# Python矩阵元素N次:新手教程 作为一名刚入行的开发者,你可能会遇到需要对矩阵中的每个元素进行运算的问题。在Python中,这可以通过多种方式实现,但我会教你一种简单且高效的方法。以下是实现矩阵元素N次的详细步骤。 ## 步骤流程 以下是实现矩阵元素N次的步骤流程: | 步骤 | 描述 | | ---- | ---- | | 1 | 导入必要的库 | | 2 | 定
原创 2024-07-22 11:40:27
150阅读
前言Numpy是一个很强大的python科学计算库。为了机器学习的须要。想深入研究一下Numpy库的使用方法。用这个系列的博客。记录下我的学习过程。 系列: Numpy库进阶教程(二) 正在持续更新计算逆矩阵numpy.linalg模块包括线性代数的函数。能够用来矩阵的逆,求解线性方程组、特征值及求解行列式。 mat函数能够用来构造一个矩阵,传进去一个专用字符串,矩阵的行与行之间用分号隔
文章目录1.前言2.方法介绍3.算法步骤4.数值实验5.总结6.Matlab代码 1.前言乘幂法主要用于求实矩阵按模最大的特征值(主特征值)和相应特征向量.本文通过Matlab解决实际例子来验证乘幂法的正确性.2.方法介绍设实矩阵A的特征值为,相应特征向量线性无关.假设矩阵的特征值按模排序为,于是对任一非零向量可得到(1) 令(2) 可得向量序列: (3) 下面仅讨论的情况: 由式(2)(3)知
法的主要作用是矩阵的主特征值,这种方法特别适用于大型稀疏矩阵。定理:设A∈有n个线性无关的特征向量,主特征值满足>·····,则对任意非零初始向量(0),按照下述方法构造的向量序列{},{}: (P.S)过程迭代讲解:第一步:定义一个初始规范化向量。第二步:初始规范化向量与矩阵A相乘得到一个结果矩阵第三步:取结果矩阵的最大值,即({})第四步:将初始规范化向量除以矩阵的最大值
文章目录1.创建数组相关1.1创建数组: .array1.2创建0矩阵: .zeros1.3创建1矩阵: .ones1.4区间内按等差创建矩阵: .arange1.5区间内按元素个数取值: .linspace1.6创建时指定元素类型1.7array数组的数据类型2.数组属性相关2.1查询矩阵的大小: .shape2.2改变shape2.3查询维度: .ndim2.4查询元素个数: .size2.
转载 2023-10-09 14:49:55
1109阅读
最近,我在写一个算法来解决一个编码难题,这个难题涉及到在一个笛卡尔平面上找到一个与其他所有点的距离最小的点。在Python中,两个点之间的距离函数可以表示为math.sqrt(dx** 2 + dy ** 2)。但是,这个函数中的每一项都有不同的表达方法:dx ** 2、 math.pow(dx, 2)和 dx *dx。有趣的是,它们的运行结果各不相同,我想知道它们是如何以及为什么会是这样的。计时
转载 2023-08-06 10:05:03
89阅读
Python pow() 函数描述pow() 方法返回 xy(x 的 y 次方) 的值。语法以下是 math 模块 pow() 方法的语法:import mathmath.pow( x, y )内置的 pow() 方法pow(x, y[, z])函数是计算 x 的 y 次方,如果 z 在存在,则再对结果进行取模,其结果等效于 pow(x,y) %z。注意:pow() 通过内置的方法直接调用,内置方
转载 2023-05-23 16:41:08
267阅读
一. 什么是快速:快速顾名思义,就是快速算某个数的多少次。其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高。一般一个矩阵的n次方,我们会通过连乘n-1次来得到它的n次。但做下简单的改进就能减少连乘的次数,方法如下:把n个矩阵进行两两分组,比如:A*A*A*A*A*A  =>  (A*A)*(A*A)*(A*A)。这样变的好处是,你只需要计
矩阵快速Python模板及其应用矩阵加速递推矩阵快速模板(Python实现)矩阵加速递推斐波那契数列其他例子 R e f
抽象-函数  目录:function---函数 append--附加  range--列 definition--定义    1:编写一个小程序    2:抽象和结构       ------创建函数 &nb
# Python实现数组 ## 1. 整体流程 首先我们来看一下实现“python数组”的整体流程,我们可以用表格展示出每个步骤: ```mermaid flowchart TD Start --> Input_Data Input_Data --> Check_Validation Check_Validation --> Calculate_Power
原创 2024-04-30 04:33:03
154阅读
# Python复数的实现 ## 引言 在Python中,我们可以使用复数来表示包括实部和虚部的数值。操作是对复数进行乘方运算,即将一个复数自乘若干次。本文将介绍如何在Python中实现复数的操作,并帮助刚入行的开发者进行学习和理解。 ## 整体流程 实现Python复数的操作可以分为以下几个步骤: 步骤 | 操作 --- | --- 1 | 定义一个复数对象 2 | 定义一
原创 2023-08-31 12:04:32
101阅读
python的控制结构一二三四五 一自数是指一个n位数,它的每个位上的数字的n次之和等于它本身,当n等于4的时候,4位的自数称为四叶玫瑰数,所有四叶玫瑰数。for i in range(1000,10000): a=str(i) if int(a[0])**4+int(a[1])**4+int(a[2])**4+int(a[3])**4==i: print
1、数组和矩阵常见用法Python使用NumPy包完成了对N-维数组的快速便捷操作。使用这个包,需要导入numpy。SciPy包以NumPy包为基础,大大的扩展了numpy的能力。因此只要导入了scipy,不必在单独导入numpy了!为了使用的方便,scipy包在最外层名字空间中包括了所有的numpy内容。本文还是区分numpy中实现的和scipy中实现的。以下默认已经:import numpy
恕我愚昧,今天才知道斐波拉契还可以这样解 源于上次快手的笔试题,本来以为很简单的斐波拉契结果总是时间超时
转载 2018-05-06 14:10:00
164阅读
2评论
使用python和numpy进行矩阵逆:>>> import numpy as np>>> b = np.array([[2,3],[4,5]])>>> np.linalg.inv(b)array([[-2.5, 1.5],[ 2. , -1. ]])并非所有矩阵都可以求逆。 例如,奇异矩阵是不可逆的:>>> import
python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。一、numpy的导入和使用from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头。二、矩阵的创建由一维或二维数据创建矩阵from numpy import *; a1=array([1,2,3]);
  • 1
  • 2
  • 3
  • 4
  • 5