对于一个矩阵而言,若数值为零的元素远远多于非零元素的个数,且非零元素分布没有规律时,这样的矩阵被称作稀疏矩阵;与之相反,若非零元素数目占据绝大多数时,这样的矩阵被称作稠密矩阵稀疏矩阵在工程应用中经常被使用,尤其是在通信编码和机器学习中。若编码矩阵或特征表达矩阵稀疏矩阵时,其计算速度会大大提升。对于机器学习而言,稀疏矩阵应用非常广,比如在数据特征表示、自然语言处理等领域。用稀疏表示和工作在计算上
转载 2023-06-03 19:37:32
292阅读
# Python矩阵转化稀疏矩阵 在计算机科学中,稀疏矩阵是一种特殊的矩阵类型,其中大部分元素为零。稀疏矩阵在处理大规模数据时非常有用,因为它们可以节省内存空间并提高计算效率。在Python中,我们可以使用不同的方法将密集矩阵转化稀疏矩阵。 ## 密集矩阵稀疏矩阵 密集矩阵是指大部分元素都不是零的矩阵,而稀疏矩阵则是指大部分元素都是零的矩阵。在处理大规模数据时,我们通常会遇到稀疏矩阵
原创 2024-06-23 04:30:47
57阅读
稀疏矩阵Python科学计算中的实际意义对于那些零元素数目远远多于非零元素数目,并且非零元素的分布没有规律的矩阵称为稀疏矩阵(sparse)。由于稀疏矩阵中非零元素较少,零元素较多,因此可以采用只存储非零元素的方法来进行压缩存储。对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节。但是,这些存储空间的大部分存放的是0元素,从而造成大
理论内容引自 最近在研究机器学习相关内容,后面会尽量花时间整理成一个系列的博客,然后朋友让我帮他实现一种基于SVR支持向量回归的图像质量评价方法,然而在文章的开头竟然发现 灰度共生矩阵这个陌生的家伙,于是便有此文。 主要参考博客1: 主要参考博客2: 主要参考博客3: 主要参考博客4:1.灰度共生矩阵生成原理   灰度共生矩阵(GLDM)的统计方法是20世纪70年代初由R.Haralick等
# 如何将 NumPy 矩阵转化稀疏矩阵 在数据科学和机器学习中,稀疏矩阵是一个非常重要的概念。当我们处理大量数据时,许多矩阵中的元素可能为空或者零,使用稀疏矩阵可以大大减少存储需求并提高计算效率。本文将详细介绍如何将 NumPy 矩阵转化稀疏矩阵。 ## 流程概述 以下是实现的步骤: | 步骤编号 | 任务 | 具体内容
原创 2024-10-28 05:09:43
210阅读
目录1. 索引元素2. 切片省略参数写法3. 应用举例4. 多维数组二维数组获取一行 二维数组获取一列5. 多维数组的切片如果要获取,第一行的第四和第五个元素:如果得到数组的最后两行和最后两列:如果得到数组的第三列:如果取出第3,5行的奇数列:copy 复制数组6. 花式索引6.1 一维花式索引6.2 二维花式索引7. where 语句8. 数组类型数组转换:dtype数组转换:asar
# 如何实现“矩阵转化稀疏矩阵”在PyTorch中的操作 在深度学习和数据科学的应用中,矩阵操作是很常见的任务。尤其是当处理大型数据集时,稀疏矩阵能有效节省存储空间和计算资源。在本篇文章中,我们将一起学习如何使用PyTorch将一个普通矩阵转换为稀疏矩阵。 ## 项目流程 首先,我们需要了解实现这一目标的整体流程。下面是整个过程的步骤表: | 步骤 | 操作
原创 2024-09-16 05:16:20
291阅读
分布式算法设计1).MapReduce 在Map和Reduce两个基本算子抽象下,所谓Hadoop和Spark分布式计算框架并没有本质上的区别,仅仅是实现上的差异。阅读了不少分布式算法的实现(仅仅是实现,不涉及原理推导),大部分思路比较直观,大不了几个阶段的MapReduce就可以实现。这里主要介绍一个曾经困扰我好久且终于柳暗花明的问题,即“大规模稀疏矩阵乘法”。
1 稀疏矩阵介绍        在networkx包中,很多运算返回的是sparse matrix(如nx.laplacian_matrix),这是稀疏矩阵格式。隶属于scipy.sparseimport networkx as nx G = nx.Graph() G.add_node(1) G.add_nodes_f
标量简单操作 长度 向量简单操作 长度 其他操作 矩阵简单操作 乘法(矩阵*向量) 乘法(矩阵*矩阵) 范数 取决于如何衡量b和c的长度常见范数矩阵范数:最小的满足的上面公式的值Frobenius范数 特殊矩阵对称和反对称 正
在处理稀疏矩阵乘以稀疏矩阵的问题时,尤其在 Python 环境中,我们需要利用高效的存储和计算方式,以避免不必要的资源浪费。本文将详细记录解决“Python 稀疏矩阵稀疏矩阵”问题的过程,包括环境准备、集成步骤、配置详解、实战应用、性能优化和生态扩展。 ### 环境准备 确保您有合适的环境来运行 Python 代码。推荐使用 Python 3.6 及以上版本,并安装 `scipy` 和 `n
原创 6月前
33阅读
Python稀疏矩阵1. 导入模块2. SciPy中的稀疏矩阵2.1 坐标列表格式 COO2.2 格式转换2.3 压缩列格式和压缩行格式 CSR/CSC3. 创建稀疏矩阵3.1 稀疏矩阵的可视化3.2 稀疏矩阵线性代数3.3 线性方程组3.4 LU分解3.5 特征值问题 数组和矩阵是数值计算的基础元素。目前为止,我们都是使用NumPy的ndarray数据结构来表示数组,这是一种同构的容器,用于存
# 如何将矩阵转化稀疏矩阵的存储方式 ## 1. 整体流程 下面是将矩阵转化稀疏矩阵的存储方式的流程: ```mermaid flowchart TD A(创建一个稠密矩阵) --> B(转化稀疏矩阵) B --> C(存储稀疏矩阵) ``` ## 2. 每一步的具体操作 ### 步骤1:创建一个稠密矩阵 首先,我们需要创建一个稠密矩阵,然后将其转化稀疏矩阵
原创 2024-07-11 06:06:37
100阅读
直接上代码:#!/usr/bin/env python # -*- coding:utf-8 -*- # 序列转为稀疏矩阵 # 输入:序列 # 输出:indices非零坐标点,values数据值,shape稀疏矩阵大小 import numpy as np def sparse_tuple_from(sequences, dtype=np.int32): indices = []
转载 2023-06-02 23:19:25
276阅读
以下是使用NumPy / SciPy进行密集和稀疏M矩阵的方法:import numpy as np import scipy.sparse as sp # Coordinates where S is True S = np.array([[0, 1], [3, 6], [3, 4], [9, 1], [4, 7]]) # Dense M matrix # Random big matrix M
默认使用csr格式的稀疏矩阵1、如果要统计稀疏矩阵全部元素的和,不要用sum(a),用np.sum(a)或则a.sum()就好。对于shape=10000*10000的矩阵而言,全部求和采用np.sum比sum高效得多:number = np.sum(sum(xtest_mask),axis=1)[0,0]   2.2秒number = np.sum(xtest_mask) &
title: 稀疏矩阵乘法 date: 2020-11-09 19:31:44 tags: 稀疏矩阵运算 categories: 数据结构 在本算法中,两个稀疏矩阵的特性都有用到 规定规定以下变量名称,本文讲述 矩阵A × 矩阵B = 矩阵C 的运算过程需要用到的存储结构有:矩阵A,矩阵 B 的原始二维数组(2个)矩阵A,矩阵B 的三元组数组(2个)存储 矩阵A,矩阵B 每行有多少个非零
目录矩阵稀疏矩阵稀疏矩阵的构建稀疏矩阵的销毁输出稀疏矩阵一般转置快速转置完整代码 矩阵在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。稀疏矩阵就是在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时,则称该矩阵稀疏矩阵,是一种特殊的矩阵。为了节省空间,我们可以
转载 2024-01-12 18:48:00
96阅读
一、sparse模块:python中scipy模块中,有一个模块叫sparse模块,就是专门为了解决稀疏矩阵而生。本文的大部分内容,其实就是基于sparse模块而来的导入模块:from scipy import sparse二、七种矩阵类型coo_matrixdok_matrixlil_matrixdia_matrixcsr_matrixcsc_matrixbsr_matrix三、coo_matr
转载 2023-06-02 23:18:32
237阅读
上周五汇报一篇导师的论文,其中提及了使用四叉树来存储稀疏矩阵。抽空用Python把它实现了一下,做个总结。首先看论文中提到的一个样例:可以看到通过通过四叉树将稀疏矩阵化成最后的结果。这里注意其中的圆分别为中间结点的混合域M、都为0的空域E与分解到最后可能有值或含零元的密集域D。上图就是我将一个长为n的矩阵,通过四叉树化解到最小边长为d的矩阵小块图。这里的d是我们自己定义的最后化解的最小矩阵块。代码
  • 1
  • 2
  • 3
  • 4
  • 5