# Python OpenCV 主成分分析
## 1. 概述
在本文中,我将向你介绍如何使用Python和OpenCV进行主成分分析(PCA)。主成分分析是一种常用的降维技术,可以用于数据可视化、特征提取和模式识别等领域。我将引导你理解主成分分析的基本原理,并提供相应的Python代码示例。
## 2. 主成分分析的流程
下面是主成分分析的基本流程,我们将在后续的内容中详细说明每个步骤。
`
原创
2023-10-07 14:36:18
119阅读
本系列所有的代码和数据都可以从陈强老师的个人主页上下载:Python数据程序参考书目:陈强.机器学习及Python应用. 北京:高等教育出版社, 2021.本系列基本不讲数学原理,只从代码角度去让读者们利用最简洁的Python代码实现机器学习方法。无监督学习就是没有y,让算法从特征变量x里面自己寻找特征。本节开始无监督学习的方法,经典统计学的主成分分析,可以将数据进行线性变化从而进行降维,用少数几
转载
2023-07-29 18:21:43
83阅读
# 使用Python OpenCV进行主成分分析(PCA)
主成分分析(PCA)是一种常用的降维技术,广泛应用于数据预处理、特征提取和数据可视化。PCA通过线性变换将原始数据转换到新的坐标系,使得转换后的数据中最重要的特征能在前几个主成分中得到体现。Python中的OpenCV库为我们提供了便利的实现方式,接下来我们会介绍如何利用OpenCV进行PCA分析。
## PCA的原理
PCA的核心
个人笔记,仅用于个人学习与总结 本文目录1. Pytorch的主要组成模块1.1 完成深度学习的必要部分1.2 基本配置1.3 数据读入1.4 模型构建1.4.1 神经网络的构造1.4.2 神经网络中常见的层1.4.3 模型示例1.5 模型初始化1.5.1 torch.nn.init常用方法1.5.2 torch.nn.init使用1.5.3 初始化函数的封装1.6 损失函数1.6.0 基本用法
转载
2023-07-05 12:41:09
406阅读
参考url:https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html主成分分析(principal component analysis,PCA),无监督算法之一,PCA是一种非常基础的降维算法,适用于数据可视化、噪音过滤、特征抽取和特征工程等领域。1、主成分分析简介 主
转载
2023-10-31 15:37:25
158阅读
主成分分析(PCA)是一种基于变量协方差矩阵对数据进行压缩降维、去噪的有效方法,PCA的思想是将n维特征映射到k维上(k<n),这k维特征称为主成分,是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。 主成分分析再说白点就是将多项指标转化为少数几项综合指标,用综
转载
2023-08-13 16:35:04
193阅读
用python实现主成分分析(PCA)python应用实例:如何用python实现主成分分析背景iris数据集简介算法的主要步骤代码实现查看各特征值的贡献率 python应用实例:如何用python实现主成分分析主成分分析(Principal Component Analysis,PCA)是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
转载
2023-09-05 09:41:47
159阅读
主成分分析(principal component analysis)是一种常见的数据降维方法,其目的是在“信息”损失较小的前提下,将高维的数据转换到低维,从而减小计算量。PCA的本质就是找一些投影方向,使得数据在这些投影方向上的方差最大,而且这些投影方向是相互正交的。这其实就是找新的正交基的过程,计算原始数据在这些正交基上投影的方差,方差越大,就说明在对应正交基上包含了更多的信息量。后面会证明
主成分分析1简介在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
转载
2023-06-30 17:43:52
225阅读
主成分分析:步骤、应用及代码实现。主成分分析(Principal Component Analysis)算法步骤:设有 m 条 n 维数据:将原始数据按列组成 n 行 m 列矩阵 X将 X 的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值求出协方差矩阵 求出协方差矩阵的特征值及对应的特征向量将特征向量按对应特征值大小从上到下按行排列成矩阵,取前 k 行组成矩阵 PY=PX 即为降维到
转载
2023-08-06 09:49:31
264阅读
多元统计分析的过程包括:第一类:多变量分析过程,包括princomp(主成分分析)、factor(因子分析)、cancorr(典型相关分析、multtest(多重检验)、prinqual(定性数据的主分量分析)及corresp(对应分析);
第二类:判别分析过程,包括discrim(判别分析)、candisc(典型判别)、stepdisc(逐步判别)
第三类:聚类分析过程,包括cluster(谱系
转载
2023-10-13 12:40:44
193阅读
主成分分析(Principal Component Analysis,PCA)是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。# 用python实现主成分分析(PCA)
import numpy as np
from numpy.linalg import eig
from sklearn.datasets impor
转载
2023-05-26 16:43:27
187阅读
本文的参考资料:《Python数据科学手册》; 本文的源代上传到了Gitee上;本文用到的包:%matplotlib inline
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
转载
2023-05-30 15:26:55
246阅读
前面写的一些统计学习方法都是属于监督学习(supervised learning),这篇主成分分析(principal components analysis,简称 PCA )和下一篇聚类分析(clustering)都是属于非监督学习(unsupervised learning)。之前 ISLR读书笔记十二 中已经提到过主成分这一概念。其主要目的是利用一小部分数据组合,尽可能多地体现这里的
转载
2024-01-24 23:08:38
44阅读
pyTorch架构参考资料:主页 - PyTorch中文文档 (pytorch-cn.readthedocs.io) 文章目录pyTorch架构torch是什么pytorch中的torchtorch.Tensortorch.Storagetorch.nn包含多种子类:容器(Containers):网络层:函数包:torch.nn.functional搭建好的网络:torch.autograd:to
转载
2023-07-07 11:29:54
186阅读
KPCA用非线性变换将输入数据空间映射到高维空间,使非线性问题转为线性问题,然后在高维空间中使用PCA方法提取主成分,在保持原数据信息量的基础上达到降维的目的。常用的核函数有以下几种:核函数化后的得到m*m的样本矩阵(m为样本个数)。用核函数将原始样本投射到高维空间,再用PCA进行降维。实现步骤:1. 将数据进行核函数化;2. 对核矩阵样本进行归一化;归一化方法如下:2. 之后用PCA进行降维实现
转载
2023-11-05 14:05:31
169阅读
文章目录写在前面一、PCA主成分分析1、主成分分析步骤2、主成分分析的主要作二、Python使用PCA主成分分析 写在前面作为大数据开发人员,我们经常会收到一些数据分析工程师给我们的指标,我们基于这些指标进行数据提取。其中数据分析工程师最主要的一个特征提取方式就是PCA主成分分析,下面我将介绍Python的sklearn库中是如何实现PCA算法及其使用。一、PCA主成分分析什么是PCA主成分分析
转载
2023-10-17 11:58:37
431阅读
使用sklearn库中的PCA类进行主成分分析。导入要用到的库,还没有的直接pip安装就好了。from sklearn.decomposition import PCA
import numpy as np # 如果使用numpy的array作为参数的数据结构就需要,其他type没试过是否可以
import pandas as pd # 非必要
from sklearn.decomposition
转载
2023-08-15 08:37:54
94阅读
一、PCA算法介绍主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理。通常咱们获取的原始数据维度都很高,好比1000个特征,在这1000个特征中可能包含了不少无用的信息或者噪声,真正有用的特征才100个,那么咱们能够运用PCA算法将1000个特征降到100个特征。这样不只能够去除无用的噪声,还能减小很大的计算量。pythonPC
转载
2023-10-18 22:06:03
97阅读
一、简介 这篇文章简单介绍了PCA的原理、思想和一些定义,本文将介绍如何用python进行PCA。二、实现2.1 标准化数据,方差为。from sklearn.preprocessing import StandardScaler
StandardScaler(*, copy=True, with_mean=True, with_std=True)使用说明:实例化:scaler = Standar
转载
2023-07-28 09:26:56
81阅读