文本的聚类,就是为了解决大批量文本的自动分类的问题。之前遇到过这样一个问题,就是有一堆文章的数据,想要得到这些文章对应的类别。但是这堆文章的数据里面并没有分类的信息,要是按照传统方式,需要人工对每篇文章都进行分类处理,但是这样的分类处理的速度太慢了,而且对于人工来说,工作量也是极其庞大的。是典型的吃力不讨好的一个活,那么有没有什么方法能够对这些数据进行简单的自动聚类呢,也就是无监督对这些文本进行分
     聚类:所谓物以类聚,人以群分,聚类分析就是依照某种评价准则根据数据中对象的相似程度分成多个类;同一个聚类中的对象相关性高,彼此相似,不同聚类之间 的对象相关性低,彼此相异。聚类分析算法有划分方法、层次聚类、基于密度的聚类和基于网格的聚类等几种主要的聚类策略;1.基于层次的聚类方法    &nb
2.2 聚类  我们经常会碰到这样的问题:  1)如何通过一些特定的症状归纳某类特定的疾病?  2)谁是银行信用卡的黄金客户?  3)谁喜欢打国际长途,在什么时间,打到哪里?  4)对住宅区进行聚类,确定自动提款机ATM的安放位置。  5)如何对用户WAP上网行为进行分析,通过客户分群进行精确营销?  除此之外,促销应该针对哪一类客户,这类客户具有哪些特征?这类问题往往是在促销前首要解决的问题,对
常用的分类算法包括: 决策树分类法 朴素的贝叶斯分类算法(native Bayesian classifier) 基于支持向量机(SVM)的分类器 神经网络法 k-最近邻法(k-nearest neighbor,kNN) 模糊分类法下文出处 常见的聚类算法包括: ①基于划分的聚类算法 k-means: 是一种典型的划分聚类算法,它用一个聚类的中心来代表一个簇,即在迭代过程中选择的聚点不一定是聚类中
前面几篇文章介绍了回归或分类的几个算法,它们的共同点是训练数据包含了输出结果,要求算法能够通过训练数据掌握规律,用于预测新输入数据的输出值。因此,回归算法或分类算法被称之为监督学习(Supervised Learning)。本篇文章将接触有别于监督学习的另一类机器学习算法——无监督学习(Unsupervised Learning)。无监督学习是寻找缺乏标准答案的输入数据的规律。其中聚类算法是无监督
聚类分析分为系统聚类,快速聚类和两步聚类到底应该聚成几类呢? ①聚类结果一般要求各聚类组成员数目相差不大,除非目的是异常值的发现,比如本例。 ②如果规律是存在的,那么不同方法应该得到相似或一致的结果,意即可用不同聚类方法对数据进行聚类。 ③拆分验证:如果数据样本量较大,则可以将数据随机分为两个部分,对两部分分别进行聚类。因为数据为来自同一总体的2个部分,因此聚类得到的结果应该一致。 ④采用两步聚类
# Python中的分类聚合实现教程 在如今的数据分析中,分类和聚合是非常重要的工作。本文将为你系统地介绍如何在Python中实现分类聚合,特别是使用Pandas库进行数据处理。我们将从整体流程入手,分步讲解所需的代码及其含义。 ## 整体流程 我们将使用一个表格来展示整个分类聚合的流程步骤: | 步骤 | 操作 | 说明
原创 10月前
17阅读
目录1、介绍2、原理输入激活函数3、损失及其优化损失函数优化4、API5、案例:乳腺癌肿瘤预测数据集代码?作者介绍:双非本科大三网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发、数据结构和算法,初步涉猎Python人工智能开发。?主页:@逐梦苍穹?回归与聚类算法系列⭐①:概念简述⭐②:线性回归⭐③:欠拟合与过拟合⭐④:岭回归?您的一键三连,是我创作的最大动力?1、介绍目
1 基础算法 (1) K-means算法:对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 (2) K-means算法是局部最优解,初始聚类中心一般是随机选择,有可能运行两次的结果稍有不同。 (3) 距离公式常采用欧式距离和余弦相似度公式,前者越小代表距离越小,后者越大代表越相似。2 算法实现import numpy as np
转载 2023-06-21 21:47:55
384阅读
在本文中,我对现代机器学习算法进行了简要梳理,我通过查阅转载众多博客和资料,基于实践中的经验,讨论每个算法的优缺点,并以机器学习入门者的角色来看待各个模型。主要内容来自《机器之心》:回归、分类与聚类:三大方向剖解机器学习算法的优缺点通俗理解:1.给定一个样本特征 , 我们希望预测其对应的属性值 , 如果是离散的, 那么这就是一个分类问题,反之,如果是连续的实数, 这就是一个回归问题。 2.如果给定
聚类分析数据聚类理论理论一、聚类定义二、聚类与分类区别三、聚类分析的目的四、聚类主要方法 数据聚类理论理论一、聚类定义数据聚类 ( Cluster analysis )是指根据数据的内在性质将数据分成一些聚合类,每一聚合类中的元素尽可能具有相同的特性,不同聚合类之间的特性差别尽可能大。聚类分析是研究“物以类聚”的一种科学有效的方法,由实验测试得到的数据是原始数据,原始数据是没有进行分类的、无规律
判别与聚类的比较:聚类分析和判别分析有相似的作用,都是起到分类的作用。判别分析是已知分类然后总结出判别规则,是一种有指导的学习;聚类分析则是有了一批样本,不知道它们的分类,甚至连分成几类也不知道,希望用某种方法把观测进行合理的分类,使得同一类的观测比较接近,不同类的观测相差较多,这是无指导的学习。    所以,聚类分析依赖于对观测间的接近程度(距离)或相似程
转载 2023-12-03 13:46:39
114阅读
聚类分析是一个迭代的过程对于n个p维数据,我们最开始将他们分为n组每次迭代将距离最近的两组合并成一组若给出需要聚成k类,则迭代到k类是,停止 计算初始情况的距离矩阵一般用马氏距离或欧式距离个人认为考试只考 1,2比较有用的方法是3,4,5,8 最喜欢第8种 距离的计算  欧式距离    距离的二范数  马氏距离    对于X1, X2  均属于N(u, Σ)
转载 2023-10-12 16:02:46
208阅读
一、算法概述DBSCAN是一个出现得比较早(1996年),比较有代表性的基于密度的聚类算法,DBSCAN是英文Density-Based Spatial Clustering of Applications with Noise 的缩写,意思为:一种基于密度,同时对于有噪声(即孤立点或异常值)的数据集也有很好的鲁棒的空间聚类算法。DBSCAN将簇定义为密度相连的点的最大集合,能够把具有足够高密度的
  通常数据分析的工作流程:1.发现问题2.想好要提取的数据3.清洗、处理数据4.对数据进行分析5.得出数据分析结论并且验证是否正确6.调整产品策略一、发现问题在日常工作中,经常数据会出现各种问题,比如说某个渠道的流量和昨天的数据对比,发现流量突然减少了、点击率突然增高或者降低了、产品上线后某个指标没有达到的预期目标或者是领导要求增加用户的流量和营收了等等二、想好要提取的数据我们发现问题
Python 中,聚类分析是一种无监督机器学习方法,旨在将数据分成若干个群集。它通常用于发现数据中的潜在结构或模式,并将数据分组为具有共同特征的群集。聚类分析有许多不同的算法,如 k-均值聚类、层次聚类和密度聚类。每种算法都有自己的优缺点,因此在使用时应根据数据特点和分析目标选择合适的算法。Python 中有许多机器学习库可用于聚类分析,如 scikit-learn、pandas 和 scip
转载 2023-06-05 11:30:15
174阅读
如果把机器学习归为两大类,那么主要的工作可以分为:分类和聚类。而分类任务基本上占整个机器学习或者是数据挖掘领域的70%,可见我们遇到的很多问题,都可以用分类的算法进行解决。机器学习发展到现在,许多被证实有效的分类算法被提出,例如我们经常会用到的K-近邻分类器、朴素贝叶斯分类器、支持向量机(SVM)、决策树算法等。大家平时在用的时候可能并不太清楚每种分类算法适合哪种类型的数据,因为对于不同的数据集,
这是 python 数据分析案例系列的第二篇,主要是聚类分析,实现起来较为简单。在处理实际的数据分析案例时,我们面临的往往是比较复杂的研究对象,如果能把相似的样品(或指标)归成类,处理起来大为方便。聚类分析目的就是把相似的研究对象归成类先贴上总结的聚类分析基本步骤:算法过程如下:1)从N个文档随机选取K个文档作为 质心2)对剩余的每个文档测量其到每个 质心 的距离,并把它归到最近的质心的类3)重新
机器学习回归与聚类算法思维导图线性回归 欠拟合与过拟合 岭回归分类算法:逻辑回归模型保存与加载无监督学习 K-means算法4.1 线性回归回归问题: 目标值 - 连续型的数据4.1.1 线性回归的原理2 什么是线性回归 函数关系 特征值和目标值 线型模型 线性关系 y = w1x1 + w2x2 + w3x3 + …
# Python SQLite 查询结果分类聚合 ## 流程图 ```mermaid flowchart TD A(开始) --> B(连接到数据库) B --> C(执行查询语句) C --> D(获取查询结果) D --> E(分类聚合) E --> F(输出结果) F --> G(结束) ``` ## 步骤 | 步骤 | 描述 | |
原创 2023-10-07 14:16:28
131阅读
  • 1
  • 2
  • 3
  • 4
  • 5