直到第三季度尾,领导让她马上出一份市场团队前几个月的销售统计表和竞品信息,第二天开会用,这些数据和信息分布在大小几十个表格和文档里,大小有5G,光是打开都花了15分钟。 面对这么庞大的数据python还不太熟练的她束手无策,excel就更不用说了,这么大的数据卡死简直是分分钟的事,万般无奈之下,她向专业做数据分析的我请教该怎么办。其实,做数据分析不一定得用python、R这些编程语言,
转载 2024-08-23 14:21:58
141阅读
原标题:Python说:常见的数据分析库有哪些又是老生常谈的话题了,前面出过有不知道有好多篇讲数据分析库的文章,但是今天还是得拿出来再聊聊,有免得有些新伙伴再去找了!常见的Python数据分析库PandasPandas是一个开放源码的Python库,它使用强大的数据结构提供高性能的数据操作和分析工具。它的名字:Pandas是从Panel Data - 多维数据的计量经济学(an Econometr
作者:东哥起飞,数据爱好者Python数据科学hello,大家好我是东哥!用Python处理数据大家都不陌生了,属常规操作,但常规之下还是也有些暗藏技巧的,本篇东哥分享6个好玩高效的操作,帮助大家提高效率。一、Pandas ProfilingPandas Profiling提供数据的一个整体报告,是一个帮助我们理解数据的过程。它可以简单快速地对Pandas的数据数据进行探索性数据分析。其实,Pa
Python数据分析:情感分析 自然语言处理(NLP) 将自然语言(文本)转化为计算机程序更容易理解的形式 预处理得到的字符串进行向量化 经典应用: 情感分析 文本相似度 文本分类 简单情感分析: 情感字典(sentiment dictionary) 人工构造一个字典 根据关键词匹配 优点:简单实用 ...
学习Python的四个主要关键点1.数据数据类型分为五个:数字,字符串,容器(元组,集合,列表,字典),布尔,None数字(Number)分为三种类型1.整型#汤姆今年11岁 age=112.浮点型#汤姆体重为:41.4kg weight=41.43.复数例: 1+2j、 1.1+2.2j字符串(string)我们可以用引号(“或者‘)来创建字符串str="小明" age="今年18
什么是数据分析数据分析是基于历史数据进行预处理,分析、对比、汇总,产出用于辅助决策的有效信息的过程。数据分析的着力点1. 现状分析:当前出于什么样的状况,运营的整体状况,各分业务的盈亏等等。2. 原因分析:是什么原因导致的某种现象,或对现状的原因分析。3. 未来预测:基于现有数据,对未来的可能性、趋势等进行预测。  数据分析的对象总体概览指标总体概览指标就是统计数据的绝对数值。例如:当日
文章目录Python数据分析概述一、数据分析的概念1.广义数据分析2.数据挖掘二、数据分析流程1. 需求分析:2. 数据获取3.数据预处理4.分析与建模5.模型评价与优化6. 分类模型评价指标7.回归模型8.部署三、数据分析应用场景四、总思维导图 Python数据分析概述一、数据分析的概念1.广义数据分析狭义数据分析对比分析分组分析交叉分析回归分析等2.数据挖掘智能推荐关联规则分类模型聚类模型二
1,表头或是excel的索引如果是中文的话,输出会出错 解决方法:python的版本问题!换成python3就自动解决了!当然也有其他的方法,这里就不再深究 2,如果有很多列,如何输出指定的列?需求情况:有的时候,数据很多,但是只要仅仅对部分列的数据进行分析的话,要怎么做? 解决方法:df = pandas.read_excel('1.xls',sheetname= '店铺分析日报') d
python可以做数据分析,主要包括numpy,scipy,pandas,matplotlib,scikit-learn等等诸多强大的模块,在结合上ipython交互工具 ,以及python强大的爬虫数据获取能力,字符串处理能力NumPy(Numerical Python的简称)是高性能科学计算和数据分析的基础包。NumPy最重要的一个特点就是其N维数组对象(即ndarray),该对象是一个快速而
一、为什么要使用Python进行数据分析python拥有一个巨大的活跃的科学计算社区,拥有不断改良的库,能够轻松的集成C,C++,Fortran代码(Cython项目),可以同时用于研究和原型的构建以及生产系统的构建。二、Python的优势与劣势:1.Python是一种解释型语言,运行速度比编译型数据慢。2.由于python有一个全局解释器锁(GIL),防止解释器同时执行多条python字节码,
前两篇博客分别对拉勾中关于 python 数据分析有关的信息进行获取(一、对薪资进行转换在这之前先导入模块并读入文件,不仅有训练数据文件,还有一组自拟的测试数据文件。importpandas as pdimportnumpy as npimportmatplotlib.pyplot as plttrain_file= "analyst.csv"test_file= "test.csv"#读取文件获
转载 2024-01-11 12:17:15
91阅读
Python是一门简单易学且功能强大的编程语言,使其在许多领域成为编写脚本或开发应用程序理想语言 .Python被称作"胶水语言",是由于其运行效率的问题,将程序核心部分由C++等高效率语言编写,然后各个部分由它粘合. 我们在开发中如果是新手可以先选择Windows平台,后期可以迁移至Linux平台,Linux平台自带Python,而且更容易解决第三方库依赖问题.至于语言版本我推荐使用3.x版
转载 2023-08-24 10:37:23
26阅读
今天,老师要带大家解数据分析的定义、核心思路、应用领域以及开发流程,向大家全方位展示数据分析入门必备基础知识,全都是干货哦!虽然看完本文,不能让大家立马变身为一名数据分析师,但是能让大家对数据分析有一个宏观了解,为后续深入的数据分析学习打下更扎实的基础。1、数据分析的定义数据分析是指对大量有序或无序的数据进行信息的集中整合、运算提取、展示等操作,通过这些操作找出研究对象的内在规律。因此数据分析的目
转载 2023-12-13 22:29:59
9阅读
对于0基础的同学来说,想要学习python数据分析是必须掌握的一个知识要点。本文就专门针对0基础的同学,整理了数据分析入门的基础知识点,分别从是什么,为什么,有什么用三大问题着手带大家了解数据分析。一、什么是数据分析数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总和理解消化,以求最大化地开发数据的功能,发挥数据的作用。二、为什么做数据分析1、有效避免拍脑袋、主观臆想;2
本笔记摘录清华大学工业工程系朱成礼老师的python教案与授课内容,并在此基础上进行实操性的拓展,希望能对大家有所帮助。一、数据分析简介 数据分析的一般流程:需求分析——>获取数据——>数据预处理——>分析与建模——>评价与优化——>部署二、数据分析实例1、数据集情况简介2、数据预处理(清洗)2.1 数据探索分析快速了解数据全貌,发现数据特征编号、
在上面的代码中,iloc后的方括号中逗号之前的部分表示要获取行的位置,只输入一个冒号,不输入任何数值表示获取所有的行;逗号之后的方括号表示要获取的列的位置,列德位置同样是也是从0开始计数。我们把这种通过传入具体位置来选择数据的方式称为位置索引。2、选择连续的某几列(1)Excel实现在Excel中,要选择连续的几列时,直接用鼠标选中这几列即可操作。当然了,你也可以先选择一列,然后按住Ctrl键再去
目录:分析方法&模型一、 逻辑树分析法二、 多维度拆解分析法三、 对比分析法四、 假设验证法 / 归因分析法五、 相关性分析法六、 RFM分析模型七、 漏斗分析模型八、 AARRR模型 一、 逻辑树分析法定义: 将一个复杂的大问题,拆解成一个个小的可以解决的子问题,就像一个大树一样,它有很多个分支,那每个分支就是一个子问题。应用: 费米问题:初次听到某种问题的提问时,会觉得已知条件太少,
转载 2023-06-07 13:39:56
238阅读
一.数据分析步骤1.提出问题2.理解数据3.数据清洗4.构建模型5.数据可视化二.医院2018年销售数据数据导入在文件路径前加r(转义符)文件可能有多个sheet,所以用sheet_name重命名参数dtype=str同意先按照字符串读入,之后再转换salesDf.head(),显示前5行,从0行开始,如果想要输入多行,可以在括号内输入数字1.提出问题月均消费次数月均消费金额客单价2.理解数据3.
想要在职场中站稳脚步,掌握一门硬技术是非常重要的事情。顺应时代发展,抓住新的机遇,在如今市场经济不景气的2022年显得尤为重要。数数当下比较热门或高涨的行业,当属数据分析和人工智能领域,若想进入数据分析或AI行业,就一定要掌握其必备的基本要领,而这项本领就是PythonPython数据分析或人工智能不能缺少的语言。为何Python技能不可缺少1. 提供强大的支持Python这门编程语言无论是对
1、Python下的数据分析模块pandas:依赖于numpy和sciepy,主要用于数据分析数据预处理以及基本的作图,这个包不涉及复杂的模型。statsmodels:统计包,设计各种统计模型,包括回归、广义回归、假设检验等,结果类似于R语言,会给出各种检验结果。对于numpy和scipy是作为科学计算用的,提供各种向量矩阵计算、优化、随机数生成等等。以上都是一些包,如果是分析环境的话,可以考虑
  • 1
  • 2
  • 3
  • 4
  • 5