概述 数据分析即从数据、信息到知识的过程,数据分析需要数学理论、行业经验以及计算机工具三者结合数据分析工具 :各种厂商开发了数据分析的工具、模块,将分析模型封装,使不了解技术的人也能够快捷的实现数学建模,快速响应分析需求传统分析 :在数据量较少时,传统的数据分析已能够发现数据中包含的知识,包括
转载
2023-09-15 09:56:40
143阅读
python数据分析师。现在大数据分析可以热得不要不要的。从发展来看,python数据分析师很有前景的。但也并不是随便一个公司就可以做大数据分析的。有几个问题是做大数据要考虑的:大数据来源是否全面,分析什么,谁来使用等等。当然如果能到能做大数据的公司,那薪水还是可观的。要做python数据分析师,有一些东西是不得不学的,要不然,做不了分析师的,可能做的程序员,帮别人实现分析的结果而已。第一:统计学
转载
2023-09-05 17:18:35
69阅读
1.大数据对思维方式的影响是使得分析全样而非抽样、效率而非精准、相关而非因果。 2.区别:大数据侧重于对海量数据的存储、处理与分析,从海量数据中发现价值,服务于生产和生活;云计算本质上旨在整合和优化各种IT资源,并通过网络以服务的方式廉价地提供给用户;物联网的发展目标是 实现物物相连,应用创新是物联网发展的核心。 联系:从整体上看
转载
2024-01-16 00:39:18
318阅读
1.数据分析1.1 基本统计分析1.1.1 含义基本统计分析是统计某个变量的最小值、第一个四分位值、中值、第三个四分位值以及最大值。1.1.2 数据的中心数据的中心位置可分为均值(Mean)、中位数(Median)和众数(Mode)。1.1.3 describe函数描述性统计分析函数为describe。该函数返回值有均值、标准差、最大值、最小值、分位数等。括号中可以带一些参数,如percentil
转载
2024-01-10 22:54:10
60阅读
现如今,数据分析中有很多的工具都是十分实用的。由于大数据的发展越来越好,使得使用了大数据分析的企业已经朝着更好的方向发展。正是因为这个原因,数据分析行业的人才也开始变得火热起来,尤其是高端人才,越来越稀缺。当然,对于数据分析这个工作,的确是需要学会一些编程语言的,比如MATLAB,Python,Java等语言。但是对于初学者来说,Python是一个不错的语言,Python语言简单易懂,同时对于大
转载
2023-09-20 22:57:43
111阅读
物流大数据,都是哪些数据?物流大数据主要包括运单信息的数据和车辆信息的数据,然而关于运单信息往往涉及商业机密,并且信息分布于不同行业企业内部,不宜公开。因此当前现实的数据条件来看,实业界和学术界的物流大数据主要是关于货运车辆信息的数据。其中包括:车辆id信息,驾驶员信息,车辆行驶轨迹坐标信息,车辆停车信息,车辆速度信息,车辆里程信息,车辆温度信息,车辆油耗信息,车辆其他状态信息等。轨迹数据挖掘
转载
2023-12-18 23:02:17
0阅读
大数据工程师技能在物流行业如何使用从大数据自身的技术体系来看,大数据所有的技术都紧紧围绕数据价值化来展开,企业利用大数据当前也逐渐从传统的数据采集和分析,向数据生产来转变,相信在工业互联网时代这一趋势会越发明显。现在,物流业非常地智能化,其中一个最突出的例子就是快递行业的蓬勃发展。可以说,目前快递行业的强大,离不开物流智能的贡献,那么大数据工程师技能在物流行业如何使用?1、提高物流行业的智能化:物
转载
2023-08-04 17:48:31
189阅读
1.5 全书概览本书将较为全面地描述大数据分析的模型、技术、实现与应用。其中第2~7章介绍大数据分析模型,包括关联分析模型、分类分析模型、聚类分析模型、结构分析模型和文本分析模型;第8~11章介绍大数据分析相关的技术,包括大数据预处理、特征选择和降维方法、面向大数据的数据仓库和大数据分析算法。第12~14章介绍三种用于实现大数据分析算法的平台,分别是大数据计算平台、流式计算平台和大图计
转载
2024-01-11 13:30:27
65阅读
高速发展的信息化技术使得与空间位置相关的数据积累越来越多,空间数据的存储、分析与可视化传统技术已逐渐无法满足需求,亟需使用承载力更强、可靠性更高、计算速度更快的方法。分布式技术为空间大数据的处理与分析提供了有效的解决方案,下面就以一个十亿数据量级别的出租车位置数据为例,为大家介绍如何使用分布式技术进行空间大数据的可视化与分析。1 背景介绍纽约市出租车和轿车管委员会(TLC)目前公开发布了详细的出租
转载
2023-10-17 12:50:30
157阅读
1、统计学理论1.1 大数定量定义: 指大量重复某一实验时,最后的频率会无限接近于事件的概率 数据的样本量越大,我们预测和计算的概率就越准确 数据的样本量越小,我们预测和计算的概率就越可能失效举例: 某产品用户还只有几百人,就用一个模型来预测用户的流失。数据量太小导致用上面模型都很难预测准确 样本量不足时,得出的预测结果是无序的,混乱的解决方法:主客观结合:深入业务,从用户的视角思考问题,广泛收集
转载
2023-09-27 17:11:02
239阅读
课前一些话作业提交及命名规则: 大数据分析方法(定义):不是随机分析法(抽样调查)这样的捷径,而是采用所有数据进行分析处理。——《大数据时代》问题在于可能存在一些离群值,脏数据。需要先清洗。数据价值: 大数据特点:规模大,速度快(最重要是流动快,实时性高),种类多,价值密度低。大数据基本类型:数据库数据(二维表),数据仓库数据,事务数据(订单),图和网路数据,其他类型数据数据分
转载
2023-12-20 22:22:54
80阅读
大数据项目实战第一章 项目概述 文章目录大数据项目实战第一章 项目概述学习目标一、项目需求和目标二、预备知识三、项目架构设计及技术选取四、开发环境和开发工具介绍五、项目开发流程总结 学习目标掌握项目需求和目标 了解项目架构设计和技术选型 了解项目环境和相关开发工具 理解项目开发流程在人力资源管理领域,网络招聘近年来早已凭借其范围广、信息量大、时效性强、流程简单而效果显著等优势,成为企业招聘的核心方
转载
2024-02-02 09:45:02
80阅读
首先,是数据分析的模块,numpy 高效处理数据,提供数组支持,很多模块都依赖它,比如pandas,scipy,matplotlib都依赖他,所以这个模块都是基础。所以必须先安装numpy。然后,pandas 主要用于进行数据的采集与分析,scipy 主要进行数值计算。同时支持矩阵运算,并提供了很多高等数据处理功能,比如积分,微分方程求样等。matplotlib 作图模块,结合其他数据分析模块,解
转载
2023-06-28 14:23:32
145阅读
对于 Pandas 运行速度的提升方法,之前已经介绍过很多回了,里面经常提及 Dask ,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。1、什么是Dask?Pandas 和 Numpy 大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合 RAM&n
转载
2024-02-29 19:25:38
54阅读
作者:东哥起飞对于Pandas运行速度的提升方法,之前已经介绍过很多回了,里面经常提及Dask,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。1、什么是Dask?Pandas和Numpy大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合RAM,这时候Dask来了。Dask是开源免费的。它是与其他社区项目(如Numpy,Pand
转载
2023-08-31 22:35:17
182阅读
数据分析的步骤 第一步:提出问题 第二步:收集数据 第三步:数据处理和清洗 第四步:数据分析 第五步:可视化,得出结论一、提出问题 一个数据分析的过程,其实是从数据中得到结论的过程。但分析的起点并非数据,而是问题! 先确定问题是什么,再投入精力从相关的数据中挖掘答案。二、收集数据 通常情况下,我们想要收集数据,会有4种数据的来源:1.观测和统计得到的数据2.问卷和调研得到的数据3.从数据库中获取的
转载
2023-09-11 17:04:06
64阅读
数据分析流程数据分析的流程和思路主要分为五部分,分别是 提出问题、收集数据、数据处理和清洗、数据分析以及可视化。那我们先从提出问题和数据收集开始,一般想收集数据主要有四种来源:观测、统计、问卷、调研、数据库以及网络爬虫。三、数据清洗1数据预处理#导入数据分析包import pandas as pdimport numpy as np▲理解这份数据集▲结合代码来看数据.2调整数据类型3修改列名4选择
转载
2023-08-07 20:48:50
3阅读
1、pandas数据结构之DataFrameDataFrame生成方式:1、从另一个DataFrame创建。2、从具有二维形状的NumPy数组或数组的复合结构生成。3、使用Series创建。4、从CSV之类文件生成。下面介绍DataFrame的简单用法: a):读取文件代码:from pandas.io.parsers import read_csv
df=read_csv("H
转载
2024-08-23 18:53:14
56阅读
Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性。Python可用于数据分析,但其单纯依赖Python本身自带的库进行数据分析还是具有一定的局限性的,需要安装第三方扩展库来增强分析和挖掘能力。Python数据分析需要安装的第三方扩展库有:Numpy、Pandas、SciPy、Matplotlib、Scikit-Lear
转载
2023-07-29 23:39:21
134阅读
作者:东哥起飞首发于公众号:Python数据科学对于Pandas运行速度的提升方法,之前已经介绍过很多回了,里面经常提及Dask,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。1、什么是Dask?Pandas和Numpy大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合RAM,这时候Dask来了。Dask是开源免费的。它是与其
转载
2023-08-31 21:28:47
112阅读