KNN算法(k-近邻算法)算法本质为从训练集中拿出一条数据,与训练集中数据计算,找出与该条数据最相似的几条数据,并根据训练集中已知的分类去预测训练集数据的分类。计算距离的常用算法有欧氏距离、余弦相似、皮尔逊系数等。该算法不需要事先去训练一个模型,且算法简单,但是面对大数据及特征值维度较高的情况下,运算时间会急剧增加。同时,k值的选择也会影响算法的准确率。from sklearn.datasets
本文目的最近在研究LSH方法,主要发现用pyspark实现的较少,故结合黑马头条推荐系统实践的视频进行了本地实现。本项目完整源码地址:https://github.com/angeliababy/text_LSH项目博客地址:算法本章主要介绍如何使用文章关键词获取文章相似性。主要用到了Word2Vec+Tfidf+LSH算法。 1.使用Word2Vec训练出文章的词向量。 2.Tfidf获取文章关
转载 2023-12-17 06:22:42
109阅读
合并读入数据集一、append与assignappend方法 (a)利用序列添加行(必须指定name) (b)用DataFrame添加表assign方法 该方法主要用于添加列,列名直接由参数指定: 可以一次添加多个列:二、combine与updatecomine方法comine和update都是用于表的填充函数,可以根据某种规则填充 (a)填充对象 可以看出combine方法是按照表的顺序轮流进行
本期文章,我们对embedding词嵌入、similarity相似性和clustering聚类进行相关的介绍,而这些都是大多数 ML机器学习的基础,也是自动编码器必不可少的算法。 在计算机中将真实的相关数据表示为计算机可以识别的数据过程称为embedding词嵌入,这在我们介绍transformer模型时有相关的介绍,因为计算机不能直接识别图片,或者文字,我们需要把这些图片或者文字进行一
从谷歌最早提出知识图谱的概念后,知识图谱的火爆从美国一路烧到了国内,近几年知识图谱技术在国内已经得到了飞速的发展,我们对知识图谱的概念及应用都不再陌生。大家可以看到知识图谱技术的应用出现在越来越多的垂直领域中。从最早大家最为熟悉的在搜索引擎中的应用,逐渐地扩充到金融领域、医药领域等等。今天我们已经在各行各业中,都能够看到知识图谱的身影,更多的技术人员也加入了我们知识图谱工程的大家庭。那么今天我们来
文章目录一、什么是knn算法二、算法原理三、通用步骤四、简单应用 一、什么是knn算法knn算法实际上是利用训练数据集对特征向量空间进行划分,并作为其分类的模型。其输入是实例的特征向量,输出为实例的类别。寻找最近的k个数据,推测新数据的分类。二、算法原理 对于上面的这个散点图,已知的点是分布在一个二维空间的,当然,在实际生活中,情况会变得复杂,可能是多维的。这个例子表示的是肿瘤病人的相关信息,横
转载 2023-08-23 15:57:21
312阅读
先看看官方文档:MinHash for Jaccard DistanceMinHash is an LSH family for Jaccard distance where input features are sets of natural numbers. Jaccard distance of two sets is defined by the cardinality of t
原创 2023-06-02 21:58:45
320阅读
模板匹配最近准备把学过的一些知识整理写成博客,加深印象。 模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。它是图像处理中最基本、最常用的匹配方法。模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效。普通的模板匹配方法属于暴力搜索法,通过将模板图像不断在搜索图上移动,计
文章目录相似计算方法1. 文本距离1.1 编辑距离(Edit Distance)1.2 最长公共子串、最长公共子序列(Long Common Subsequence,LCS)1.3 句向量表示(Word Averaging Model,WAM)1.4 WMD1.5 BM252. 统计指标2.1 Cosine Similarity2.2 Jaccard Similarity2.3 Pearson
转载 2024-04-26 14:57:21
135阅读
我们在比较事物时,往往会用到“不同”,“一样”,“相似”等词语,这些词语背后都涉及到一个动作——双方的比较。只有通过比较才能得出结论,究竟是相同还是不同。但是万物真的有这么极端的区分吗?在我看来不是的,生活中通过“相似”这词来描述可能会更加准确。比如男人和女人,虽然生理器官和可能思想有些不同,但也有相同的地方,那就是都是人,就是说相似不为0;比如石头与小草,它们对于虚拟类都是一种实体类,相似
转载 2024-08-03 15:51:43
203阅读
这里主要面向初学者介绍句子相似目前主流的研究方向。从词到句子,这是目前中文相似计算的主要思想。而由这个-思想引申出来的算法却非常多,这里面向初学者介绍比较容易实现的方法。这里要介绍的是二分法计算句子相似。这个算法实现简单,思路清晰由此出现的技术分类变化万千,主要的变化是分组,也成为分集合。二分法的思想是:集合一和集合二是两个词的集合,集合一的每一个词与集合二的每一个词求相似,找出最大的一个
1. 文本相似计算-文本向量化2. 文本相似计算-距离的度量3. 文本相似计算-DSSM算法4. 文本相似计算-CNN-DSSM算法1. 前言最近在学习文本相似计算,前面两篇文章分别介绍了文本的向量化和文本的距离度量,这两篇文章的思路主要在机器学习的框架下面,本文准备换一个思路,从深度学习的角度来处理文本相似的问题。本文介绍DSSM(Deep Structured Semantic
常用的下面一些距离计算方式欧式距离(Euclidean Distance)余弦相似(Cosine)皮尔逊相关系数(Pearson)修正余弦相似(Adjusted Cosine)汉明距离(Hamming Distance)曼哈顿距离(Manhattan Distance)1.欧式距离(Euclidean Distance)欧式距离全称是欧几里距离,是最易于理解的一种距离计算方式,源自欧式空间中两
Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。算法实现原理图解:a.首先是有两个字符串,这里写一个简单的 abc 和 abeb.将字符串想象成下面的结构。
欧式距离使用差值的平和再求根即可以计算欧式距离,为了保证相似的值在0-1范围内,可以使用如下公式:相似 = 1/(1 + 距离),当距离为0时相似为1,距离很远时相似为0。# 基于欧式距离的相似计算 def ecludSim(inA,inB): return 1.0/(1.0 + np.linalg.norm(inA - inB)) dataA = np.array([[2, 0, 0,
相似计算现有的关于相似计算的方法,基本上都是基于向量的,也即计算两个向量之间的距离,距离越近越相似。下面是几种常见的相似计算方法。1.杰卡德相似系数Jaccard(杰卡德)相似性系数主要用于计算符号度量或布尔值度量的样本间的相似。 Jaccard(杰卡德)系数等于样本集交集的个数和样本集并集个数的比值。 Jaccard(杰卡德)距离是用两个集合中不同元素所占元素的比例来衡量两个集合(样本
gensimgensim是在做自然语言处理时较为经常用到的一个python工具库,主要用来以无监督的方式从原始的非结构化文本当中,学习文本隐藏的主题向量表达。包括TF-IDF、word2vec、doc2vec等多种模型实现逻辑利用HanLP对标题进行分词,形成一个二维的列表将二维列表生成预料词典,通过doc2bow稀疏向量,形成语料库词袋模型 + TF-IDF模型,计算出tfidf值获取预料词典的
六、莱文斯坦编辑距离前边的几种距离计算方法都是针对相同长度的词项,莱文斯坦编辑距离可以计算两个长度不同的单词之间的距离;莱文斯坦编辑距离是通过添加、删除、或者将一个字符替换为另外一个字符所需的最小编辑次数;我们假设两个单词u、v的长度分别为i、j,则其可以分以下几种情况进行计算当有一个单词的长度为0的时候,则编辑距离为不为零的单词的长度;\[ld_{u,v}(i,j)=max(i,j)\; \;
在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。本文的目的就是对常用的相似性度量作一个总结本文目录:1. 欧氏距离2. 曼哈顿距离3. 切比雪夫距离4. 闵可夫斯基距离5. 标准化欧氏距离6. 马氏距离7. 夹角余弦8. 汉明距
转载 2023-08-20 14:43:22
330阅读
随着知识图谱的火爆从美国一路烧到了国内,近几年知识图谱技术在国内已经得到了飞速的发展,我们对知识图谱的概念及应用都不再陌生。你可以看到知识图谱技术的应用出现在越来越多的垂直领域中。从最早大家最为熟悉的在搜索引擎中的应用,逐渐地扩充到金融领域、医药领域等等。今天我们已经在各行各业中,都能够看到知识图谱的身影,更多的技术人员也加入了我们知识图谱工程的大家庭。那么今天我们来就知识图谱的技术问题进行更深层
  • 1
  • 2
  • 3
  • 4
  • 5