文章目录写在最前轮廓发现算法边缘检测写在最后 写在最前我的意思不是说你长得很胖,emmmm,而是你的轮廓很大。 ——五星上将詹姆斯下士如是说果然有图没图,理解是不一样的,这就体现了计算机视觉的重要性,2333 上一节最后,我们说过这一次我们就将会讲解真正的OpenCV图像轮廓有关知识。轮廓发现的具体实现有多种方式,不过其实其使用在OpenCV中的使用并不困难,不过想用好还需要多点基础知识。所以这
一、Contours的寻找与拟合1、findContours的基础知识<strong>下面内容摘自于博文:;OpenCV中通过使用findContours函数,简单几个的步骤就可以检测出物体的轮廓,很方便。这些准备继续探讨一下findContours方法中各参数的含义及用法,比如要求只检测最外层轮廓该怎么办?的?hierarchy到底是什么鬼?Point()有什么用?findConto
转载 2023-11-09 11:57:46
197阅读
1、学习了解在OpenNI中,要对人进行骨架追踪,需要人先摆出PSI的姿势,然后系统根据该姿势进行骨骼校正,待校正完成后才进行骨骼的跟踪,其流程图可以参考下面的图: 由图可以看出,其完成骨骼跟踪主要分为3个部分,首先需检测到人体,然后需要固定的PSI姿势来对人体的姿势进行校正,待姿势校正完成后,才能进行人体骨骼的追踪。参见博客文章Kinect+OpenNI学习笔记之6(获取人体骨架并在Qt中显示
通过一个偶然机会,我了解到了人体姿态解算,在学习K210之余,我便想着通过opencv实现这个功能,查找了很多资料,发现可以利用opencv+openpose实现,接着我又开始找一些资料,在pycharm上部署。 文章目录前言一、环境配置二、使用步骤1.导入文件2.具体代码3.效果展示三、效果优化1.具体代码2.效果展示总结 前言人体姿态估计的一个有趣应用是 CGI(computer graphi
转载 2024-03-20 10:16:15
213阅读
1.研究背景与意义随着科技的不断发展,人脸识别技术已经在各个领域得到广泛应用,如安全监控、人脸支付、人脸解锁等。然而,传统的人脸识别技术存在一些局限性,例如对于静态图片的识别效果较好,但对于动态视频中的人脸识别则存在一定的挑战。为了解决这个问题,基于OpenCV的组合动作常规摄像头人脸活体检测识别系统应运而生。首先,我们需要了解什么是活体检测。活体检测是指通过检测人脸的生物特征和行为特征,判断其是
目录1、网络的体系结构2、下载模型的权重文件3. 第一步:生成图片对应的输出3.1 读取神经网络3.2 读取图像并生成输入blob         3.3 向前通过网络3.4 样本输出4. 第二步:关键点检测5. 第三步:找到有效的连接对6. 第四步:  组合所有属于同一个人的关键点绘出骨骼图7.
转载 2024-05-10 19:01:53
680阅读
Demo代码简单介绍项目利用face_recognition模块实现 人脸分辨识别 因为这篇文章主要介绍优化速度所以会以代码片段讲解方法 结尾会放出全部代码 注意以下代码需要一点点opencv的基础 但不多def face_detector(img, target): start = time.time() # 人脸检测结果 faceLocList = face_reco
在本教程中,使用OpenCV进行基于深度学习的人体姿态估计。我们将详细解释如何在您自己的应用程序中使用预先训练的Caffe模型,该模型赢得了2016年COCO关键点挑战。我们将简要回顾架构以了解其内部情况。1.姿态估计(关键点检测)姿态估计是计算机视觉中的一个普遍问题,用于检测物体的位置和方向。这通常意味着检测描述物体的关键点位置。一个相关的问题是头部姿态估计,我们使用面部关键点特征来获得一个人的
转载 2023-12-27 15:22:09
291阅读
1、OpenCV模块划分OpenCV其实就是一堆用C和C++语言来实现计算机视觉算法的源代码文件;例如C接口函数cvCany()实现了Canny边缘提取算法,我们可以直接将这些源代码添加到自己的软件项目中,而不需要自己去写代码实现Canny算法。同时由于源文件居多,所以根据算法的功能将源文件分到多个模块中(如下),将每个模块中的源文件编译成一个库文件(如opencv_core.lib、opencv
转载 2024-04-03 08:27:48
182阅读
参考博文:人体姿态项目的一个https://learnopencv/deep-learning-based-human-pose-estimation-using-opencv-cpp-python/参考github连接:https://github/spmallick/learnopencv/tree/master/OpenPose本项目实现:1.single 单人图像的姿态
1.1 Haar特征分类器介绍Haar特征分类器就是一个XML文件,该文件中会描述人体各个部位的Haar特征值。包括人脸、眼睛、嘴唇等等。Haar特征分类器存放目录:D:\wsbSoft\Anaconda3\envs\tensorflow\Library\etc\haarcascades,根据命名就可以很快知道各个分类器的用途1.2 detectMultiScale函数详解cvHaarD
一、经过前人学者大量的皮肤统计信息可以知道,如果将皮肤信息映射到YCrCb空间,则在CrCb二维空间中这些皮肤像素点近似成一个椭圆分布。如果我们得到了一个皮肤CrCb的椭圆,我们只需判断它是否在椭圆内(包括边界),如果是,则可以判断其为皮肤,否则就是非皮肤像素点。 void ellipse(Mat& img, Point center, Size a
1、Eigenfaces人脸识别器:Eigenface也叫做“特征脸”,通过PCA(主要成分分析)方法将人脸数据转换到另外一种空间维度做相似性运算。在计算过程中,算法可以忽略一些无关紧要的数据,仅识别一些具有代表性的特征数据,最后根据这些特征识别人脸。(1)创建Eigenfaces人脸识别器:# num_components:可选参数,PCA方法中保留的分量个数,建议使用默认值。threshold
ORB 特征关键点检测概述✔️ ORB - (Oriented Fast and Rotated BRIEF)算法是基于FAST特征检测与BRIEF特征描述子匹配实现。✔️ 相比BRIEF算法中依靠随机方式获取而值点对,ORB通过FAST方法,FAST方式寻找候选特征点方式是假设灰度图像像素点A周围的像素存在连续大于或者小于A的灰度值,选择任意一个像素点P,假设半径为3,周围16个像素表示,如下图
文章目录一、dlib库介绍及相关安装1.1 简介1.2 库的下载安装二、利用dlib库在眼睛处绘制黑色的实心圆三、总结四、参考 一、dlib库介绍及相关安装1.1 简介dlib库是一个机器学习的开源库,包含了机器学习的很多算法,使用起来很方便,直接包含头文件即可,并且不依赖于其他库(自带图像编解码库源码)。Dlib可以帮助您创建很多复杂的机器学习方面的软件来帮助解决实际问题。目前Dlib已经被广
转载 2024-02-22 15:52:41
212阅读
主要内容:内容回顾代码演示最后总结一、回顾还记得下面的图像吧。首先使用NiTE中间件获得骨骼数据;然后再利用到NiTE中的函数得到的深度图像mUserFrame.getDepthFrame();最后将骨骼坐标点映射到深度图像中。二、结合彩色图像显示骨骼坐标信息深度数据毕竟不好看,而且显示效果不好,所以今天参照他人的代码和自身之前的博文“谈谈NITE 2与OpenCV结合的第二个程序(提取人体骨骼坐
转载 2024-03-25 13:49:46
93阅读
## 人体骨架提取的流程与实现 在计算机视觉与深度学习领域,人体骨架提取是一项重要的任务。它可以应用于行为识别、运动分析、交互式游戏等多个领域。对于刚入行的开发者来说,掌握这一技术可能会有些困难,本文将为你提供一个完整的实现流程,帮助你顺利进行人体骨架提取。 ### 1. 任务流程概述 完整的操作流程可以归纳为以下几个步骤: | 流程步骤 | 描述
原创 2024-09-03 03:27:14
125阅读
前言:所使用图片并无盈利等目的,如有侵犯他人肖像权请联系删除。当当当当,第三期来廖!接上一期在线会议中人脸面部轮廓图像提取(二)——HOG人脸面部轮廓图像特征提取,介绍完HOG特征提取我们继续学习Dlib库提取特征叭!1、人脸轮廓图像提取原理在我们检测到人脸区域之后,接下来要研究的问题是获取到不同的脸部的特征,以区分不同人脸,即人脸特征检测(facial feature detection)。它也
首先,我们需要大量的正样本图像(人脸图像)和负样本图像(没有人脸的图像)来训练分类器。 我们需要从中提取特征。 下图中会用到Haar特征,就像我们的卷积核一样,每个特征都是一个值,等于黑色矩形中的像素值减去白色矩形中的像素值之和。Haar 特征值反映了图像的灰度变化。 例如,人脸的某些特征可以简单地用矩形特征来描述。 眼睛比脸颊更黑,鼻子两侧比鼻梁更黑,嘴巴比周围更黑。 Haar特征可以用在图像的
转载 2024-04-22 14:30:30
89阅读
参考: https://github.com/shantnu/FaceDetect/OpenCVOpenCV cascade 把人脸检测问题分解为好几步。对于每个数据块,它都进行一个粗略、快速的检测。若通过,会再进行一个更仔细的检测,以此不断类推。该算法有 30 到 50 个这样的阶段,或者说 cascade。只有通过全部阶段,算法才会判断检测到人脸。这样做的好处是:大多数图形都会在头几步就产生
转载 2024-08-21 16:24:11
240阅读
  • 1
  • 2
  • 3
  • 4
  • 5