在这篇博文中,我们将讨论如何使用 Java 和 OpenCV剔除背景,实现目标物体的提取。这在计算机视觉应用中非常重要,尤其是在图像处理、人脸识别和视频分析等领域。下面,我们将通过一个清晰的流程分步解析,具体包括环境预检、部署架构、安装过程、依赖管理、版本管理和最佳实践。 ## 环境预检 在开始之前,我们需要确保开发环境是适合的。首先,我们会使用思维导图来梳理出所需的软硬件环境。接下来,我
原创 6月前
29阅读
查找图像的轮廓在图像处理及应用中扮演着重要的角色。那么什么是轮廓(contour)?《Learning OpenCV 3》中给出的定义是这样的——轮廓即是以某种方式表示图像中的曲线的点的列表。这种表示可以根据实际的情形不同而不同。表示一条曲线的方式有很多种。OpenCV中,轮廓是由STL风格的vector<>模板对象表示的,其中vector中的每个元素都编码了曲线上,下一点的位置信息。
转载 2024-07-03 18:36:50
443阅读
剔除人员
原创 2021-07-16 14:03:12
452阅读
目标在本章中,将学习:如何将一个图像中的特征与其他图像进行匹配OpenCV中使用Brute-Force匹配器和FLANN匹配器Brute-Force匹配器的基础暴力匹配器很简单。它使用第一组中一个特征的描述符,并使用一些距离计算将其与第二组中的所有其他特征匹配。并返回最接近的一个。 对于BF匹配器,首先必须使cv.BFMatcher() 创建BFMatcher对象。 它需要两个可选参数:第一个参
转载 2024-04-07 21:53:11
71阅读
OpenCV Java:强大的计算机视觉库在Java中的应用,是将OpenCV与Java语言相结合的实践,为Java开发者提供了便利的接口和示例代码,使得在Java平台上进行视觉计算变得更加容易。项目简介lichao3140/Opencv_Java 是一个专门针对Java开发者的OpenCV集成项目,旨在简化Java环境下的计算机视觉编程。该项目不仅封装了OpenCV的核心API,还提供了丰富的示
目录一、基础理论1、思想2、大致过程二、详细过程1、首先需要模板库2、得到模板3、原图限定大小4、模板匹配5、匹配所有子文件夹,保存最佳得分(最匹配项)三、大致过程(细分类,节省时间)1、汉字匹配 2、英文字符匹配3、数字/英文匹配 4、显示模板匹配总代码参考资料一、基础理论1、思想把提取到的每一张字符,和模板库中的所有字符进行对比。2、大致过程先拿到模板库,把模板和待匹配的图
函数createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod ); /*参数1:滑动条轨迹名 参数2:滑动条依附的窗口名 参数3:滑块的位置,创建时,滑块初始位置就是这个变量当前的值 参数4:轨迹的最大值 参数5:回调函数 参数6:默认0,用户传给回调函数的数据,如果第
转载 2024-04-14 12:09:43
45阅读
一:课程介绍1.1:学习目标  学会用imread载入图像,和imshow输出图像。createTrackbar加入滚动条和其回调函数的写法。matchTemplate并学会通过该函数实现模板匹配。     学会怎样将一副图片中自己感兴趣的区域标记出来1.2:什么是模板匹配?  在一副图像中寻找和另一幅图像最相似(匹配)部分的技术。1.3:案例展示  输入有
##仅记录工程中的工作  opencv中提供了多种双目视觉匹配的算法实现,比如BM,SGBM,HH,VAR等,这些算法实现在calib3d文件中,并在opencv提供的 sample文件中有具体的例子,具体的算法实现和例子可以查看opencv库,这里不对算法的实现原理做解析。以下只说明各个算法接口和参数的意义。opencv中使用setParamName和getParamName来设置和获
1 模板匹配1.1 原理所谓的模板匹配,就是在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最高的区域选择为最终的结果。实现流程:准备两幅图像:1.原图像(I):在这幅图中,找到与模板相匹配的区域2.模板(T):与原图像进行比对的图像块滑动模板图像和原图像进行比对:将模板块每次移动一个
1.在原图上裁剪一块作为模板图像,如果图像不是裁剪的, 大小有变化的话,会影响匹配结果。   2.运行代码/* 简单图像模板匹配 */ #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include <iostream>
模板匹配是指在图像A中寻找与图像B最相似的部分,一般A称为输入图像,B称为模板图像模板匹配函数result = cv2.matchTemplate(image , temp1 , method , [,mask])result 函数每次计算模板和输入图像的重叠区域相似度之后将结果存入映射图像result中,result图像中每个点都代表一次相似度的比较,类型是单通道32位浮点型  若输入图像的尺寸
大家好,最近在处理数据的时候pd.merge()操作使用场景很多,但是它有个前提是必须有关键值key能精确对应上,而我们实际场景中可能会遇到需要类似模糊匹配的情况,那么可以怎么处理呢?今天,我们就来了解一下!!先看一个实际案例:现在我们有两份数据,一份记录着每天不同玩家购买某道具的时候实际支付的购买金额,另外一份记录着该道具调整售价的日期及对应售价。需求如下:将这两张表合并,形成一张总表记录每天玩
总结一下实现多角度模板匹配踩的坑 一 、多角度匹配涉及到要使用mask,首先opencv matchTemplateMask自带的源码如下:static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _result, int method, InputArray _mask ) { CV_As
opencv图像特征点的提取和匹配(一)opencv中进行特征点的提取和匹配的思路一般是:提取特征点、生成特征点的描述子,然后进行匹配opencv提供了一个三个类分别完成图像特征点的提取、描述子生成和特征点的匹配,三个类分别是:FeatureDetector,DescriptorExtractor,DescriptorMatcher。从这三个基类派生出了不同的类来实现不同的特征提取算法、描述及匹
1.模板匹配(Template Match)(1)模板匹配介绍模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域,所以模板匹配首先需要一个模板图像T(给定的子图像)另外需要一个待检测的图像-源图像S工作方法,在带检测图像上,从左到右,从上到下计算模板图像与重叠子图像的匹配度,匹配程度越大,俩者相同的可能性越大模板匹配介绍——匹配算法介绍计算(归一化)平方不同计算(归一化)相关性计算(归一化)
转载 2024-02-29 11:23:06
506阅读
目录概念步骤单个对象匹配代码实现一代码实现二多个对象匹配代码实现 概念模板匹配与剪辑原理很像,模板在原图像上从原点开始浮动,计算模板(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有六中,人后将每次计算的结果放入一个矩阵里面,作为输出结果。加入原图形是A*B大小,则输出结果的矩阵是(A-a+1)(B-b+1) 匹配完之后,告诉你每一个位置的结果,(结果会因为匹配算法不同
图像特征的匹配通过对图像提取特征后,得到特征点和描述特征点信息的特征向量,在对图像的检索和匹配当中主要通过对描述符[特征向量]的计算来实现,下面主要通过ORB来进行图像特征的提取,使用不同的算法来实现图像的匹配.1.暴力匹配(Brute-Force)2.K-临近匹配3.FLANN匹配(Fast Library for Approximate Nearest Neighbors)www.cs.ubc
一、引言模板匹配的作用在图像识别领域作用可大了。那什么是模板匹配?模板匹配,就是在一幅图像中寻找另一幅模板图像最匹配(也就是最相似)的部分的技术。说的有点抽象,下面给个例子说明就很明白了。在上面这幅全明星照中,我们想找出姚明头像的位置,并把它标记出来,可以做到吗?可以,这就是模板匹配的要做的事情。其实模板匹配实现的思想也是很简单很暴力的,就是拿着模板图片(姚明头像)在原图(全明星照)中从左上至右下
模板匹配是通过模板在采集到的原图像进行滑动寻找与模板图像相似的目标。模板匹配不是基于直方图的方式,而是基于图像的灰度匹配。其基本原理是逐像素的把一个以一定大小的实时图像窗口的灰度矩阵与参考图像的所有可能的串口灰度阵列,按照某种相似度量方法进行搜索比较的匹配方法,从理论上说就是采用图像相关技术。为了利用模板匹配从源图像中得到匹配区域,从源图像选取该区域作为进行匹配的模板。模板从源图像左上角开始每次以
  • 1
  • 2
  • 3
  • 4
  • 5